Future Standardization of Space Telecommunications Radio
System with Core Flight System

Janette C. Briones”,
NASA Glenn Research Center, Cleveland, OH, 44135

Joseph P. Hickey",
ZIN Technologies, Inc., Middleburg Heights, OH

and

Rigoberto Roche?, Louis M. Handler$, and Charles S. Hall™
NASA Glenn Research Center, Cleveland, OH, 44135

NASA Glenn Research Center (GRC) is integrating the NASA Space
Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an
avionics software operating environment. The STRS standard provides a common,
consistent framework to develop, qualify, operate and maintain complex, reconfigurable and
reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-
and-play software executive called the Core Flight Executive (cFE), a reusable library of
software components for flight and space missions and an integrated tool suite. Together,
STRS and cFS create a development environment that allows for STRS compliant
applications to reference the STRS application programmer interfaces (APIs) that use the
cFS infrastructure. These APIs are used to standardize the communication protocols on
NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library,
which adds the ability to run STRS applications on existing cFS platforms. The purpose of
this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results
performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground
Station and the SCaN (Space Communication and Navigation) Testbed currently flying
onboard the International Space Station (ISS). Additionally, this paper presents a
demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft
Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This
configuration allows for the data sheets to specify binary formats for data exchange between
STRS applications. The integration of STRS with cFS leverages mission-proven platform
functions and mitigates barriers to integration with future missions. This reduces flight
software development time and the costs of software-defined radio (SDR) platforms.
Furthermore, the combined benefits of STRS standardization with the flexibility of cFS
provide an effective, reliable and modular framework to minimize software development
efforts for spaceflight missions.

I. Introduction

ASA’s Space Telecommunications Radio System (STRS) is the project to meet future space communications
and navigation system needs by defining an open architecture for NASA space and ground software-defined
radios (SDRs) providing a common, consistent framework to abstract the application software from the radio

* Computer Engineer, Information and Signal Processing Branch, MS-54-1, Non-member.
T Software Engineer, ZIN Technologies, Inc., Non-member.
t Computer Engineer, Information and Signal Processing Branch, MS-54-1, Non-member.
§ Senior Engineer, Information and Signal Processing Branch, MS-54-1, Non-member.
™ Electronics Engineer, Flight Software Branch, MS-54-4, Non-member.
1
American Institute of Aeronautics and Astronautics



platform hardware to reduce cost and risk of using complex reconfigurable and reprogrammable radio systems
across NASA missions. The Standard defines an open architecture to enable the reuse of applications, waveforms,
and services implemented on various SDR platforms. The Standard provides a detailed description and set of
requirements to implement the architecture. The Standard encourages the development of applications that are
modular, portable, reconfigurable, and reusable. STRS applications use the STRS infrastructure-provided
application program interface (API) and services to load, verify, execute, change parameters or unload an
application. Some of STRS benefits include increasing the reliability, decreasing the development time, and
decreasing the cost of SDR technology. By encapsulating functionality into modular entities, a deployed SDR can
accommodate advances in radio technology simply by upgrading the various STRS software modules in use.

A layer cake model of the STRS architecture is shown in fig 1. The waveform applications and high level
services use an STRS-specific API to call the STRS infrastructure as well as a POSIX application environment
profile to call functions within the operating system (OS). Similarly, the STRS infrastructure uses an STRS-specific
API to call the waveform applications and services. The hardware abstraction layer (HAL), and any board support
package (BSP) and drivers are needed to use the specialized hardware or the general-purpose processing module
(GPM).

Waveform Applications and High Level Services

POSIX API Subset STRS API

STRS Infrastructure

os | Network Stack |
HAL API
BSP Drivers
GPM Specialized HW

Figure 1. STRS Architecture Layer Cake Model.

The Core Flight System (cFS) is a software suite that takes advantages of a heritage of Goddard Space Flight
Center (GSFC) flight software efforts and has evolved from many flight projects, which had considerable overlap in
their basic needs [1]. By using a proven foundation, the cFS architecture reduces time to deploy high-quality flight
software, reduces project schedule and cost, provides common standards, and provides a platform for advanced
concepts and prototyping which in turn encourages future software reuse. The cFS uses a layered architecture as
shown in fig 2, where internals of a layer can be changed without affecting other layers’ internals and components.
Integrating both systems will enable technology infusion and evolution for future missions with lower development
time and risk.

2
American Institute of Aeronautics and Astronautics



STRS P .
Sl oF Mission\  /ission Mission and cFS
Bus eee cFS BT App N Application Layer
etwo App App 1

Mission STRS Mission and cFS
Library Library Library Layer

cFE Core
Layer
OS Abstraction cFE Platform Support Abstraction
VxWorks package: PRo m Library Layer
Board Support Mission Developed RTOS / BOOT
Package GSFC Maintained Layer

In development

—
=
=
- Partial open source
=
]

| PROM Boot FSW 3 Party

STRS

Figure 2. cFS Software Layer.

This paper describes the new cFS-STRS SDR prototype and preliminary experimental results obtained using the
Advanced Space Radio Platform (ASRP), the GRC S-band Ground Station and the Space Communication and
Navigation (SCaN) Testbed [2]. It also presents a demonstration of the Consultative Committee for Space Data
Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) electronic data sheet (EDS) technology inside cFS.

1. Background

As mentioned above, cFS uses a layered architecture as shown fig 3. The Real Time Operating System (RTOS)
layer contains the vendor support packages and the operating system, which provides message queues, semaphores,
file system and shell among other services. Using the Operating System Abstraction Layer (OSAL), flight software
such as the cFE can run on multiple operating systems without modification. The OSAL is a small software library
that isolates the flight software from the RTOS. OSAL provides a subset of common RTOS functions that is
accessible to the upper layers through a consistent API. It includes abstraction for module loading (e.g. dlopen() in
POSIX) to dynamically load or unload executable code, tasks, semaphores, mutexes, or file/directory access.

The platform support package (PSP) contains the software needed to adapt cFS to a particular hardware platform
and low-level access to device(s) available on the platform. Using a common interface to devices allows the
hardware implementation to be changed without changing application code.

The Core Flight Executive (cFE) operates on top of the PSP and OSAL layers. This is a set of “core
applications” which provide mission independent, re-usable flight software services and a standardized API for
flight software. The executive services provide the capability to load additional software modules for mission-
specific functionality. There are two types of modules: applications and libraries. Libraries provide additional API
implementations that other applications may use. These modules extend the basic APl provided by cFE and may
utilize OSAL, cFE, or PSP functionality, or even other libraries. Applications modules are similar to libraries except
that they also create at least one dedicated execution context (task) where libraries do not. Applications usually
communicate with other applications through the cFE-provided Software Bus (SB) but may also use any available
API to send/receive data from other entities in the system.

3
American Institute of Aeronautics and Astronautics



Application

Layer e ™~
Key
o 7 77777777 ! Custom Code/
Library Project Implements
____’:?y?f.___ . Core Flight Apps
_____________ Re-Used Code
oFE | e
ayer
Platform Specific
——mmmmmmmm - (Possible to Re-Use)
Abstraction OS Abstraction AP cFE Platform Support Package AP . rovied oy OSAL
Library
Layer Platform Support Package (PSP)

RTOS/Boot Vendor Supplied Packages
Layer

Figure 3. cFS Software Layers.

The cFS applications provide a set of commonly needed software modules that operate within cFE, such as Limit
Checking (LC), Scheduling (SCH), Housekeeping (HK), Command Ingest (CI) and Telemetry Output (TO), among
others. Combining generic cFS libraries and applications with mission-specific applications can rapidly build
complex software systems.

All cFS source code is implemented using ANSI C99; cross-platform portability is achieved by avoiding use of
any direct OS or platform-specific library calls. All external function references should be limited to OSAL, cFE,
and PSP APIs, and basic C library calls.

Figure 4 shows the relationship between the core cFE services and underlying OSAL services. The Executive
Services (ES) manages startup, loads dynamic modules into memory when necessary, spawns tasks, and manages
running applications. The Software Bus (SB) provides a datagram message transfer service between applications. It
uses a “publish/subscribe” design where applications publish messages at any time, and any other application can
subscribe to the message stream. The Table Services (TBL) provides the capability to dynamically load objects that
determine runtime behavior. This is typically used for configuration data that is set and tested on the ground before
being transferred to the flight system. It allows this configuration data to change independently of the application
code, it also has the ability to dynamically load and atomically replace table objects without necessarily restarting
the application(s) or system software. The Event Services (EVS) publishes asynchronous system events as a
telemetry stream. The File Services (FS) extends OSAL file system API for cFS applications, providing a common
file header and identification routines for all cFS-related files. The Time Services (TIME) extends the OSAL timer
services, providing a monotonic “Mission Elapsed Time” (MET) value and correlating this value with other times
such as UTC using synchronization messages.

All cFS applications primarily communicate using datagrams passed via the Software Bus (SB) service. This
service may be bridged to other entities through gateway applications such as fast common gateway interface
(FCGI), command ingest/telemetry output (CI/TO), the software bus network (SBN), and others. Commands and
telemetry can be exchanged with other systems/processors, which may or may not be based on cFS. Internally, the
software bus utilizes CCSDS standard 133.0-B-1 space packet protocol [3], so data exchange with other space data
systems is possible with minimal translation.

4
American Institute of Aeronautics and Astronautics



Figure 4. cFS Services.

I11. cFS-STRS Prototype Architecture

Figure 5 depicts how STRS and cFS coexist within the same flight computer or operating environment. The
STRS architecture does not define any specific threads or execution contexts, so the STRS APl implementation best
fits as a cFS library as opposed to an application. The STRS-defined APl (STRS_Initialize, STRS_ReleaseObiject,
STRS_Start, STRS_Stop, etc.), per NASA-STD-4009 [4], are implemented in a modular library called “STRS_OE”.
Per STRS requirements, portable STRS waveforms must only use the STRS infrastructure-provided APl with a
prefix of “STRS_” and implement STRS application-provided API with a prefix of “APP_"; they must not have any
other dependencies aside from this and a minimal set of POSIX calls. Therefore, STRS waveforms/applications are
agnostic to the surrounding cFS environment; they are only aware of other entities within the STRS “cloud” shown
below. Communication with all flight computer (cFS) resources is provided through an STRS flight computer
interface application (FCI) as shown below. Both the STRS API implementation (STRS OE) and the Flight
Computer Interface (FCI) are designed to be portable, reusable cFS software components, shown in fig 6.

Core Flight System
Software Bus (SB)
Telemetry and Commands

cFE Core Apps
cFS User Apps

- STRS

Key

Figure 5. cFS and STRS Prototype Architecture.

5
American Institute of Aeronautics and Astronautics



New, re-usable

OE components STRS Domain

STRS
Devices

(Platform
Support)

“FCI” app can receive commands, telemetry
from CFS apps, or send telemetry all via CFE
Software Bus

Platform Support Package (PSP)

Figure 6. Putting It Together.

A. cFS Component #1: STRS OE Library

All STRS header files and API calls as specified by NASA-STD-4009 are implemented within this single cFS
library. The library also provides additional internal OE-specific header files that other cFS applications can use
(extensions). These additional API calls allow specialized OE-specific devices and applications to be developed as
necessary. For instance, the FCI application utilizes this extended API, but its use is not limited to FCI. If
necessary, it allows any cFS application to register its own dedicated STRS handle 1D, allowing direct data passing
between itself and other STRS application(s).

The following is implemented within the STRS OE library:

¢ Global STRS handle ID table and associated management functions.

o The OE library manages a single lookup table for all STRS handle 1Ds.

o Internal table contains an STRS API validity mask to control which STRS API calls are allowed
on any given handle ID. For instance, it can restrict calling STRS_QueueDelete() on a non-
queue handle, or STRS_FileClose() on a non-file handle, etc.

e Basic “dispatcher” functions for STRS API calls.

o Uses a branch table to service STRS API calls

o Each defined application-side (APP) API call has an entry in the branch table that the STRS OE
can invoke, depending on the STRS call.

o Implementations for basic STRS “File” and “Queue” operations using OSAL.
STRS C++ bindings as optional adapter layer

o The core STRS OE library is implemented in ANSI C99, like other cFS libraries (no C++)

For all special STRS handles, such as files, queues, and clocks, the special functionality is embedded behind the
existing “APP” functions via wrapper objects that are structured exactly like any other STRS object. This eliminates
the need for any special handling or “type checks” elsewhere in the OE. For instance:

e “APP_Instance” can create a wrapper object,

o “APP_Initialize” can obtain the underlying OS resources (e.g. a file or queue handle, etc.),

e “APP ReleaseObject” can release the OS resource,

e “APP Read” and “APP_Write” can map to the OS read/write for files or queues, or implement the get/set
operation for clocks.

6
American Institute of Aeronautics and Astronautics



The STRS_FileOpen() creates an STRS handle using the File API. Likewise, the STRS_QueueOpen() creates an
STRS handle using either the SimpleQueue or Pub/Sub API depending on type. The “Validity Mask™ implemented
in the OE ensures that a user cannot directly call other STRS APIs on these types of handles, such as
STRS_Initialize(), even though it internally may implement the APP_Initialize() call.

Although the core functionality of this STRS OE library is implemented in C to be compatible with all platforms
that support cFS, the STRS architecture specifies that applications may also be implemented in C++. To achieve
this, the implementation includes an optional bridge layer to allow dispatching to waveforms that are implemented
in C++. All C++ code in the STRS OE library is conditionally compiled through makefile options that are
configurable at compile-time. When included, the OE library transparently supports dispatching to STRS
waveforms implemented in C++ as described in NASA-STD-4009. When not included, the library has no
dependencies on a C++ runtime environment or C++ compiler whatsoever.

To achieve this, an internal C++ wrapper class provides compatible (extern “C”’) implementations of the STRS
C-language APP API, which in turn calls the C++ member function within the target STRS application. The core
dispatcher (branch table) is identical, as this is just simply a pointer to an alternate function implementation, and no
special handling or type checks are required. Using a wrapper fully portable and standards-compliant; no compiler-
or platform-specific implementation is required, and all required C++ calling conventions are correctly adhered to.

It is important to note that no actual STRS objects or handles are instantiated directly by the OE library. This
library only provides the APl implementation: all instantiation of entities described as “built-in” in the STRS
architecture standard is performed externally from the STRS OE library. A “bootstrap” function is exposed in the
API header files. The STRS handles are created by the external bootstrap software entities. The handles for the cFS
applications can provide all OE-level functionality specified by the STRS architecture. Because of this generic
design, although the STRS OE is currently being demonstrated as cFS library, the library, has no actual
dependencies on cFS itself. The same library code can theoretically be used in any system to provide the basic
STRS API, even one that does not use cFS, as a foundation to building an STRS-compliant OE.

B. cFS Component #2: Flight Computer Interface (FCI)

The FCI application is unique in that it is aware of both cFS and STRS operating environments, and serves as a
gateway between the cFS and STRS domains. On the cFS side, the FCI application binds to the software bus (SB)
like any other cFS application, so other cFS applications do not need to have any specific knowledge of the STRS
OE to send telemetry data into STRS applications. FCI can be configured to subscribe to the desired telemetry
stream and forward the incoming data to the appropriate STRS application. Likewise, on the STRS side, the FCI
communicates via an STRS handle ID and the STRS-defined API, just like any other STRS application. Therefore,
STRS applications can also send data to cFS applications simply by configuring the FCI to publish data onto the
software bus received via STRS APP_Write() calls for example. This satisfies the requirement that portable STRS
waveforms only use the STRS API, while allowing them to transparently send and receive data from the external
cFS domain.

The FCI application also implements a “remote procedure call” allowing STRS calls to be triggered via cFS
commands, identical to the way other cFS applications handle commands. This allows a standard cFS ground
system to transparently make STRS calls with no modifications, as these become ordinary cFS command messages.

In addition to the gateway functions, the FCI application also implements the portions of the STRS operating
environment that are based on cFS-provided services. This includes instantiation of all required OE-level STRS
handle IDs to implement time functions and the standard set of STRS queues: STRS_ERROR_QUEUE,
STRS_FATAL_QUEUE, STRS_ WARNING_QUEUE, and STRS_TELEMETRY_QUEUE.

The queue handles all utilize an “EventLogger” API implemented within FCI that forwards the message to the
cFE Event Services core application. Only STRS_Log() is allowed to use these handles; direct STRS_Write() calls
are restricted. The internal implementation of APP_Write() forwards the event message and contextual data to the
event service (EVS) subsystem. Each STRS handle maps to a different cFE Event ID so each type of message can
be identified in the resulting telemetry stream.

For time access, the FCI instantiates an STRS clock handle which is based on the cFE “Mission Elapsed Time”
(MET). MET is a monotonic clock provided by the cFE TIME subsystem. This clock may be correlated with other
clocks, such as UTClearth time, using a “spacecraft time correlation factor” (STCF). The cFE TIME core
application implements several messages to allow ground systems to manipulate the STCF, but MET will always be
incrementing monotonically and never “jump”. The STRS GetTime() is implemented as APP_Read(), and
STRS_SetTime() is implemented as APP_Write(). Like log queues, direct calls to STRS_Read() and STRS_Write()
on this handle are restricted; only STRS Time API calls may be used. Currently, the various “clock kinds” are time
offsets that remain local to the STRS implementation. Therefore, STRS_SetTime() only affects STRS applications.

7
American Institute of Aeronautics and Astronautics



However, it is possible to propagate this to the STCF value such that other cFE applications will also see a time
change made using the STRS_SetTime() call.

Finally, FCI also implements bindings to the FCGI application, which provides a gateway to a webserver for a
lightweight “ground system” interface useful for debugging. Basic STRS calls can be invoked using special URLSs,
and data messages can be passed in or returned to the user interface as Javascript Object Notation (JSON) strings.

IVV. Electronic Data Sheets

There is a general problem related to component portability that exists in both the cFS and STRS domains.
Although the respective architecture dictates the API syntax to use for input/output and control, it does not explicitly
dictate the exact semantics of these interfaces, leaving the specific behavior to be defined by the module
implementation. This flexibility is absolutely necessary to support a wide range of potential applications; for
instance, a generic architecture cannot fully specify the exact behavior of a “configure” or “read” API call, since this
depends entirely on what is being configured or read, respectively.

In the cFS domain, messages are exchanged using the software bus defined API. This API specifies a function
call syntax used to send or receive a message, but it does not specify what those messages actually contain; the
message payload is entirely up to the application implementation.

Likewise, in the STRS domain, many STRS API calls specify a generic “STRS Message” parameter
accompanied by a message size. At the architecture level, this is an abstract pointer that has no specific definition
associated with it, relying entirely on the application implementation to specify the format and contents of these
messages.

Standardizing the syntax of API calls only achieves part of the overall component portability/re-usability goal.
Basically, it allows pieces of source code that have been independently implemented to compile and run in any other
environment that shares the same API syntax. Although this is a critical first step to re-usability, it is not sufficient
by itself. In order to communicate and effectively achieve their intended purpose, all components that are intended
to interoperate must also agree on the various implementation details which are not specified at the architecture
level. This includes, but is not limited to:

o Specific commands or configuration options supported, and the associated meanings/effects
o Specific format for any inputs, such as an input data stream, commands or configuration parameters
o Specific format of any outputs, such as query results or telemetry data that is produced by the application

Unfortunately, there is no easy solution to this. Each problem domain has specific requirements that must be
met, which generally mean that there can never be “one data format for all”. Traditionally, the resolution of such
problems has been done at the systems engineering level, where each component would specify its specific inputs
and outputs in a separate interface control document (ICD) and whatever necessary mappings between the
components could be implemented.

Electronic Data Sheets offer a method to automate at least part of this otherwise manual task. This concept
implements the same role traditionally served by a hand-written 1CD, but in a language that is machine-readable.
This allows software tools to be much more “aware” of the details associated with any given interface, such as the
specific data formats, protocols, or timing requirements. As a result, some tasks can be automated which would
otherwise need to be hand-written, such as conversion between different data formats or encodings.

The international Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Information
Services (SOIS) working group has proposed a draft schema for electronic data sheet documents, based on XML and
specified in CCSDS book 876.0 [5]. NASA Glenn Research Center has developed and is demonstrating an
implementation of SOIS electronic data sheets as part of the Core Flight System.

Basically, rather than requiring all applications to implement an exact, fully-specified interface, application
developers can use the EDS schema language to describe the way a particular interface is implemented in their
specific component. The schema includes enough detail to enable external tools and components to reliably access
and decipher data coming from the component, send commands to a component, or manipulate configuration data of
a component.

The system components described can be physical hardware devices, where the device manufacturer would
author the EDS, or software components where EDS can serve as a common interface description between the
sender and receiver.

Figure 7 depicts the logical flow of information through the complete EDS-enabled tool chain. Initially, the EDS
files are used to generate static compile-time data definitions and run-time databases. These databases contain the
necessary metadata to allow identification of data objects as well as conversions between object types depending on
interface requirements. The compile time data definitions are used in conjunction with the application source code

8
American Institute of Aeronautics and Astronautics



to build the executable binaries, which may in turn link with the run-time database components to perform
automated object identification and conversion. Finally, system requirements can be verified through test
procedures utilizing the interfaces (commands and responses) identified in the EDS. The cFS EDS tool chain
currently implements bindings to the Lua scripting language, which allow generation and manipulation of EDS-
specified commands and data structures within Lua script files. It is also possible to implement bindings to other
high level scripting languages, such as Python, in the future.

1. Supplied by user 2. Supplied with Applications (multiple)

Project-
Specific
Config

3. Intermediate Output Products 4. Final Output Products

Figure 7. EDS Artifact Flow Example.

The cFS-STRS OE leverages the EDS technology implemented in cFS to specifically describe the STRS “sink”
and “source” interfaces as well as any tests or configurable properties of STRS applications. The electronic data
sheet can serve as documentation of the specific interfaces implemented in the application (satisfying an STRS
requirement), but also can be directly used by any tool or external system that implements the same EDS schema,
making these external components also aware of the interfaces and data formats in use without being “hard coded”.
Logically, any future update to the data format, such as the addition or removal of fields, can be propagated to other
entities via the EDS file, without necessarily requiring specific source code changes on these various systems.

9
American Institute of Aeronautics and Astronautics



Sofware Bus (SB)
Telemetry and Commands

A A

Figure 8. cFS and CCSDS.

Gateway app
CCSDS Space
. Packet
¢ J Protocol

Ground
Station

V. Experimental Results

A. Test Scenario

The initial deployment of cFS-STRS was implemented on the Advance Space Radio Platform (ASRP) as
illustrated in fig 9. The ASRP is an SDR platform that uses a micro Telecommunications Computing Architecture
(microTCA) processing board (Vadatech AMC516). This board is an embedded solution containing a general
purpose module (GPM) and a signal processing module (SPM) as a field-programmable gate array (FPGA)
hardware in a single board. The hardware allows for several processing boards to be mounted in a microTCA
chassis to provide a flexible solution for developing new waveforms (e.g. cognitive radio and networking) with
scalable processing power in a flight-like operating environment through cFS-STRS.

The initial instance of the cFS platform support package provides a software interface to the hardware present on
the ASRP platform. The cFS build implemented on the hardware is able to access and control the SPM through a
local bus after the execution of several, platform specific, initialization and clocking scripts. These are needed to set
up the hardware interfaces and are included in base-builds of cFS-ASRP. The low level interface devices were
implemented as cFS “PSP drivers” which are statically linked into the PSP library and accessible through the cFS
PSP driver interface. For each device driver, there is also an associated STRS device that allows access to the
device from the STRS domain through STRS Device calls (e.9g. STRS_ DeviceOpen(), STRS_DeviceLoad(),
STRS_DeviceWrite(), STRS_DeviceRead()). The STRS DeviceRead() and STRS_DeviceWrite() are API
extensions that were required to support reading/writing from a specific device address. This is not supported using
the basic STRS Read/Write calls, as these do not include a location or address to write to.

SCaN TestBed
onboard ISS
S-Band
RF Signal
From ISS
Wired Connection to ASRP SDR
GRC Ground ASRP SDR
Station
: ACM Experiment
Switch and Route Wired Connection to ACM' Hardware
Experiment Hardware

Figure 9. Experimental Setup.

10
American Institute of Aeronautics and Astronautics



For this particular experiment, a direct-to-Earth communications link from the SCaN Testbed aboard the
International Space Station (ISS) to the GRC Ground Station (GS) was used. The ground station has a steerable
antenna which tracks the SCaN Testbed using open-loop pointing [6]. It is equipped with various power meters and
spectrum analyzers to monitor the link, as well as, easy integration of local ground modems and test equipment via
an intra-building RF-over-fiber system. In this case, the ASRP radio was connected as a parallel signal output from
the space down-link to another experiment denoted “Adaptive Coding and Modulation (ACM) experiment”. The
purpose of the set up was to use the signal and test whether the event could be observed in the ASRP SDR running
the cFS-STRS build.

The cFS web interface provided data via a sample capture waveform on the ASRP which was used to compute
and display a live spectrum plot and for OE control. The on-board JPL SDR, configured with a commercial Digital
Video Broadcasting (DVB)-S2 waveform, transmitted over S-band to the ground station and the signal was received
with a DVB-S2 receiver. The SCaN Testbed flight computer controls and monitors the experiment via a separate
ISS communications path. The comparison between the observed signal by the GS analyzer (top signal) and the
ASRP SDR using cFS-STRS build with a received waveform (bottom signal) is illustrated in fig 10.

A g P o g e,

Figure 10. Observed Signal Comparison.

From this experiment it was concluded that the current cFS-STRS build was a successful deployment and a
viable development methodology for integrating the technology onto ground and space SDRs.

VI. Benefits and Savings

Adapting STRS to the cFS concept took a minimal amount of work, as the two operating environments can
maintain a fair amount of independence while still communicating with each other when necessary. This allows
source components from either ecosystem to be used together, thereby improving our ability to reuse code and to
lower development costs. The cFS based STRS OE leverages over 38 person-years of cFS code development.
STRS Reference OE took more than a person-year to develop, but the demo cFS based OE was developed in 6
person-weeks.

Since cFS is already intended as a cross-platform environment with appropriately layered platform and operating
system abstractions, cFS already includes most platform-specific calls which makes porting cFS-STRS to new
platforms significantly easier, as it can run on any platform that supports cFS; usually no additional porting efforts
are required for STRS. As new operating system, new avionics or new applications become available, the layered
CFE can be adapted and the cFS components can be reused without any software changes.

All source code will be available for reuse via the STRS Application Repository. The STRS Application
Repository holds documentation, code, and other artifacts that may be used to port or reuse applications on another
platform [7]. This enables missions to leverage earlier efforts by reusing software components compliant with the
architecture that have been developed in other NASA programs. This will reduce the cost and risk of deploying
SDRs for future NASA missions. It is expected that the STRS Application Repository will expand with each NASA
mission.

11
American Institute of Aeronautics and Astronautics



VII. Conclusions

This paper demonstrated the significant saving of integrating STRS with the cFS. The test results demonstrated
functionality of the successful integration of cFS with STRS on the ASRP communicating using an SDR aboard the
ISS. Further STRS integration with cFS environment will leverage mission-proven platform functions and will
reduce barriers to integration with future missions. The STRS Application Repository will provide value to future
missions with flight-proven software and verification experiences reducing future missions’ cost and risk.

Acknowledgments

The authors would like to thank James Downey, the ACM experiment team, SCaN Testbed Operations, and
Ground Station team for supporting the testing.

References

[ Core Flight System, URL: https://cfs.gsfc.nasa.gov:

[21 Space Flight System-SCaN Testbed, URL: https://spaceflightsystems.grc.nasa.gov/sopo/scsmo/scan-testbed).

[81cCSDS Space Packet Protocol, CCSDS 133.0-B-1, Blue Book, Issue 1, September 2003.

[l various Authors, “Space Telecommunications Radio System (STRS) Architecture Standard,” NASA-STD-4009 Baseline,
URL: https:/standards.nasa.gov/standard/nasa/nasa-std-4009, 2014.

Blccsbs Spacecraft Onboard Interface Services — XML Specification for Electronic Data Sheets, CCSDS 876.0-R-2, Draft Red
Book, Issue 2, June 2016.

[6] Glenn Research Center Ground Station Description, Performance, and Interface Document, GRC-CONN-DOC-1073, April
2015.

[l Space Telecommunications Radio System (STRS) Application Repository, URL: https://strs.grc.nasa.gov/repository.

12
American Institute of Aeronautics and Astronautics


https://cfs.gsfc.nasa.gov/

