
A Non-Intrusive Algorithm for Sensitivity Analysis of

Chaotic Flow Simulations

Patrick J. Blonigan

⇤

NASA Ames Research Center, Mo↵ett Field, CA, 94035, USA

Qiqi Wang

†

Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Eric J. Nielsen

‡

NASA Langley Research Center, Hampton, VA, 23681

Boris Diskin

§

National Institute of Aerospace, Hampton, VA, 23666

We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic

flow simulations to parameter perturbations. The algorithm is non-intrusive but requires

exposing an interface. Based on the principle of shadowing in dynamical systems, this

algorithm is designed to reduce the e↵ect of the sampling error in computing sensitivity

of statistics in chaotic simulations. We compare the e↵ectiveness of this method to that of

the conventional finite di↵erence method.

Nomenclature

1 m⇥ 1 vectors of ones
a Speed of sound
A m⇥ 1 vector of homogeneous tangent solution weights
B m⇥ 1 vector with projection of tangent onto homogeneous tangent solutions
CD Drag coe�cient
CL Lift coe�cient
D Drag
D Design variable of interest
f , F Objective functions or instantaneous contribution to objective functions
G Objective function sensitivities
g n⇥ 1 linearization of instantaneous contribution to objective function
H Time dilation instantaneous contribution to sensitivity of objective function
K Number of time segments
L Lift
I m⇥m identity matrix
M Mach number
m Number of homogeneous tangent solutions
n Number of states (degrees of freedom)
Q n⇥ 1 vector of conserved variables
R n⇥ 1 spatial residual vector
r, s, b Lorenz system parameters
t Time
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T Time-averaging window length
U Fluid velocity
V n⇥m tangent instantaneous solution matrix
x, y, z Lorenz system states
�t Time step
✏ Finite di↵erence perturbation
⇢ Fluid density
� Map to state at time t
W Objective-function windowing weight

Subscript
j jth column of a matrix
1 Freestream value

Superscript
F Final state or objective in a time segment
I Initial state or objective in a time segment
i Time segment
¯ Indicates time-averaged quantity

I. Introduction

Many important phenomena in aerospace engineering applications exhibit chaotic dynamics. Examples
of chaotic simulations include high-fidelity, scale-resolving turbulence simulations,1 such as direct numerical
simulations (DNS), large eddy simulations (LES), or detached eddy simulations (DES). Aerospace applica-
tions including jet engines,2 scramjet engine combustors,3 and complex launch vehicle configurations4 need to
be analyzed with DES or LES to capture key physical phenomena such as flow separation. Multidisciplinary
simulations, such as coupled fluid-structure simulations, can also exhibit chaotic dynamics.5–7

Design optimization requires computing the sensitivity of quantities of interest with respect to design
parameters. Such sensitivity analysis is particularly challenging when the quantity of interest is an infinite-
time-average, also called a statistic, of quasi-equilibirium chaotic dynamics. One example of such a quantity
of interest is the long-time-averaged root-mean-square (RMS) norm of pressure on a launch vehicle.4 A
finite-time-average approximation of any statistic, necessarily incurs a sampling error,8

eT = cT�0.5, (1)

where T is the time averaging window size and c is some constant. This sampling error decays with the
square root of the averaging window and makes the conventional finite-di↵erence method very noisy for most
practical unsteady simulations.

To illustrate the impact of the sampling error on sensitivities computed with finite-di↵erences, we use
the Lorenz attractor, a simple chaotic system with three degrees of freedom

dx

dt
� s(y � x) = 0,

dy

dt
� x(r � z) + y = 0, (2)

dz

dt
� xy + bz = 0.

The sensitivity of the time averaged objective

1

T

Z T0+T

T0

(z � 28)2 dt,

with respect to the Rayleigh number r is computed. Figure 1 (a) plots the objective function, averaged
over T = 5 time units following T0 = 5 time units of run up time. Note that the longest time scale of the
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(a) T = 5 (b) T = 50

(c) T = 500 (d) T = 5, 000

Figure 1: Time average of (z � 28)2 in the Lorenz attractor (Eq. (2)) over four di↵erent time spans T , as a
function of r, for b = 8/3 and s = 10.

dynamics of the Lorenz attractor is about 1 time unit. Despite being averaged over a time span several times
longer than the longest time scale of the system, the computed statistic shows no trend. The noise due to
sampling error is so large that it is impossible to infer how the objective function depends on the parameter.

To reduce the sampling error, one can increase the averaging length, as shown in Figures 1 (b), (c), and
(d). These figures indicate that there is a clear minimum of the statistic when r ⇡ 31. From Eq. (1),
reducing sampling error by a factor of 10 would require increasing the window size by a factor of 100. For
high-fidelity simulations, the computation time becomes infeasible fairly quickly.

The least-squares shadowing (LSS) method9 has been developed to address this challenge in sensitivity
analysis. The original LSS algorithm was intrusive, requiring significant modifications to any nonlinear
solver, including development of an appropriate strong linear solver. A less intrusive algorithm has recently
been developed.10 This paper demonstrates its utility on a chaotic, eddy-resolving turbulent flow simulation.

II. The Non-Intrusive Shadowing Algorithm

The algorithm presented in this paper is a modification of the non-intrusive Least Squares Shadowing
(NI-LSS) algorithm10 that aims to further reduce the intrusiveness. In particular, the algorithm presented
in this paper requires neither a tangent (linearized) solver nor an adjoint solver, approximating the tangent
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algorithm presented by Ni et al.10 with finite di↵erences.
We assume that we have a simulator that solves an n-dimensional autonomous ODE,

@Q

@t
+R(Q,D) = 0, (3)

for a given initial state, QI , a given parameter D, and a given time t. The simulator would compute the
solution state after the ODE evolves for time t. We also assume that the simulator computes a number
of quantities of interest, F(Q,D), averaged over the time span t. Lastly, we also need it to compute these
quantities of interest at the end of the time integration.

Mathematically, the simulator can be represented as three maps:

1. �(Q,D, t) gives the solution state after a time t evolution of the ODE at parameter D, starting from
initial state Q.

2. F(Q,D, t) gives the time averaged F(Q,D) over a time t evolution of the ODE at parameter D,
starting from initial state Q.

3. FE(Q,D, t) gives F(�(Q,D, t),D), the instantaneous value of the quantities of interest at the end of
the evolution.

The NI-LSS algorithm runs this simulation to perform sensitivity analysis of the long time averaged
objective F,

f := lim
T!1

1

T

Z T

0
F(Q,D)dt,

with respect to D. It does this by computing m + 1 finite-di↵erence approximated tangent solutions in K
size T/K time segments, then solving a size mn ⇥ mn least squares system. The algorithm proceeds as
follows:

1. Choose an integer m, an estimate of the number of unstable modes of the ODE. Choose a time span
�t, an estimate to the reciprocal of the largest Lyapunov exponent.11 Then choose the number of time
spans T/�t, such that T is a multiple of the largest time scale in the system.

2. Run the simulation for su�cient time to a quasi-equilibrium-state. Denote the state as Q0. From a
dynamical systems point of view, this means that Q0 can be considered as being on the attractor of
the system.

3. Set V0 to a random matrix of dimension (n,m) where n is the number of degrees of freedom of the
dynamical system. Set V̂0 to a zero vector of dimension n. Start from time segment i = 1.

4. Compute R(Qi�1,D). This can be obtained either directly from the simulator, or approximating it
with �(�(Qi�1,D, �t)�Qi�1)/�t ⇡ �dQ

dt for a small �t.

5. Project each column of Vi�1 as well as V̂i�1 against R, i.e.,

Vi�1 = Vi�1 � RRTVi�1

RTR
, V̂i�1 = V̂i�1 � RRT V̂i�1

RTR
,

6. Run the simulator to compute

Qi = �(Qi�1,D,�t) , F
i
= F(Qi�1,D,�t) , FE,i = FE(Qi�1,D,�t),

7. For j = 1, . . . ,m, denote Vi
j as the jth column of the n⇥m matrix Vi. Run the simulator to compute

Vi
j =

�(Qi�1 + ✏Vi�1
j ,D,�t)�Qi

✏
, Gi =

F(Qi�1 + ✏Vi�1
j ,D,�t)� F

i

✏
, Hi =

RTVi�1

�tRTR
,

8. Run the simulator to compute

V̂i =
�(ui�1 + ✏V̂i�1,D+ ✏,�t)�Qi

✏
, Ĝi =

F(Qi�1 + ✏V̂i�1,D+ ✏,�t)� F
i

✏
, Ĥi =

RT V̂i�1

�tRTR
,
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9. Compute the QR decomposition
Vi = QRi,

then compute
Bi = QT V̂i,

and set Vi = Q, V̂i = V̂i �QBi.

10. Loop back to Step 4 with i = i+ 1, until i > T/�t = K.

11. Solve the reduced Least Squares Shadowing system

min

����������

A1

...

AK

AK+1

����������
2

s.t.

2

664

�R1 I
. . .

. . .

�RK I

3

775

2

66664

A1

...

AK

AK+1

3

77775
=

2

664

B1

...

BK

3

775 ,

compute the sensitivity

df

dD
⇡

KX

i=1

wi
⇣
(Gi +Hi1)Ai + (Ĝi + Ĥi)

⌘
,

where wi is an averaging weight series satisfying
PK

i=1 w
i = 1. In this paper,

wi =

⇣
sin i⇡

K+1

⌘2

K + 1
.

This algorithm is implemented in the open source repository https://github.com/qiqi/fds . All the results
presented in this paper are based on this implementation of the algorithm.

III. Two-Dimensional Chaotic Airfoil

To demonstrate the NI-LSS algorithm, we consider a NACA 0012 airfoil at an angle-of-attack of ↵ = 20�

with a freestream Mach number M1 = 0.1 and a Reynolds number of 10,000. This flow is similar to the
chaotic vortex shedding flows previously studied by Pulliam.12 The flow was simulated using FUN3D’s
compressible, second order, finite volume flow solver.

A. Sensitivity Estimates

To demonstrate the NI-LSS algorithm, we consider the sensitivity of time-averaged lift and drag to pertur-
bations of the freestream Mach number, M1, and the angle of attack, ↵. The Mach number sensitivities can
be estimated analytically by assuming that dCL/dM1 = dCD/dM1 = 0. This is a reasonable assumption
for the small Mach number, M1 = 0.1, considered in this paper. Since the flow is nearly incompressible the
e↵ect of Mach number on CL and CD is O(M2).14

If dCL/dM1 = 0, then for a unit reference area

L =
1

2
⇢1U2

1CL =
1

2
⇢1a21M2

1CL

Since the freestream density ⇢1 and speed of sound a1 are constants

dL

dM1
= ⇢1a21M1CL = 2

L

M1
(4)

By the same reasoning,

dD

dM1
= ⇢1a21M1CD = 2

D

M1
(5)

Figure 2, shows that the analytical estimates are quite accurate.
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(a) Lift (b) Drag

Figure 2: Time-averaged lift and drag versus Mach number. The dotted line is a linear regression, the solid
lines show local gradients computed with Eqs. (4) and (5). All cases were run for 500,000 time steps and
averaged for 490,000 steps. Error bars are estimated using the batch mean approach with four means.13

(a) Lift (b) Drag

Figure 3: Time-averaged lift and drag versus angle of attack. All cases were run for 1,010,000 time steps and
averaged for 1,000,000 steps. Error bars are estimated using the batch mean approach with four means.13

We do not have similar analytical estimates for the sensitivities to the angle of attack. In an attempt to
numerically estimate the sensitivities, we performed 11 simulations in the range of ↵ 2 [19.95, 20.05], each
for 1,010,000 time steps. The lift and drag were averaged over the last 1,000,000 time steps, corresponding
to 100,000 non-dimensional time units (non-dimensionalized with respect to the freestream speed of sound
and the chord length), or 10,000 flow-through times (non-dimensionalized with respect to the freestream
velocity and the chord length). The time-averaged lift and drag are shown in Figure 3. In spite of these
lengthy calculations, no definite trend can be inferred.

B. LSS Sensitivity Results

The NI-LSS algorithm has been applied to estimate sensitivities with respect to the Mach number and the
angle of attack. One hundred time segments are used in each calculation. Each time segment contains 200
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Figure 4: Shadowing sensitivity for the derivative of lift and drag to the Mach number. The x-axis indicates
the number of time segments, each containing 200 time steps, used in the shadowing sensitivity analysis.
The light-colored bands indicate the analytical estimates.

time steps, which corresponds to 20 non-dimensional time units (non-dimensionalized with respect to the
freestream speed of sound and the chord length), or two flow-throughs (non-dimensionalized with respect
to the freestream velocity and the chord length). In the calculation, we used m = 16 homogeneous tangent
solutions, which requires m + 2 = 18 simulations for each time segment. The total computation involves
18⇥ 100⇥ 200 = 360, 000 time steps. The sensitivities are computed after each time segment is completed.
Figure 4 shows the lift and drag sensitivities with respect to the Mach number versus the number of time
segments. Figure 5 shows corresponding sensitivities with respect to the angle of attack.

In Figure 4, we can see that the NI-LSS sensitivities approach the analytical estimates as the number of
time segments increases. However, we do not observe a similar convergence for the sensitivity with respect
to the angle of attack. We think that the lack of convergence arises because the sensitivities with respect to
the angle of attack are small; and as a result, neither finite di↵erence (as shown in Figure 3) nor the current
NI-LSS algorithm (as shown in Figure 5) can accurately compute such small sensitivities.

IV. Conclusion

We presented a modified non-intrusive least-squares shadowing (NI-LSS) algorithm for computing the
sensitivity of statistics in chaotic flow simulations. The algorithm minimizes modifications of the flow solver.
The NI-LSS algorithm is applied to a two-dimensional simulation of a stalled NACA 0012 airfoil at Reynolds
number 10,000, performed using the FUN3D flow solver. Sensitivities of drag and lift with respect to the
Mach number and the angle of attack have been computed and compared to finite-di↵erence estimates.
Mach number sensitivities have also been compared with analytical estimates. The NI-LSS sensitivities
with respect to Mach number agree with finite-di↵erence and analytical estimates. Neither NI-LSS nor the
conventional finite-di↵erence approach is able to estimate the sensitivities with respect to the angle of attack.
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Figure 5: Shadowing sensitivity for the derivative of lift and drag to the angle of attack. The x-axis indicates
the number of time segments, each containing 200 time steps, used in the shadowing sensitivity analysis.
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