



#### Trajectory Design for a Cislunar CubeSat Leveraging Dynamical Systems Techniques: The Lunar IceCube Mission

AAS 17-286

Natasha Bosanac, Andrew Cox, Kathleen C. Howell, David Folta Purdue University and NASA Goddard Space Flight Center





#### Motivation

How to design complex path for CubeSat beyond LEO with limited propulsion and constrained deployment state?

- CubeSats: low-cost, rapidly-developed platform for exploration in cislunar space and beyond
- Deployment uncertainty and updates, limited propulsion create trajectory design challenges
- Leverage dynamical systems approach to construct framework for rapid and guided transfer design





### Lunar IceCube

- 6U CubeSat led by Morehead State University
- Secondary payload on EM-1 (to launch in late 2018)
- Objective: observe water and lunar volatiles
- Lunar science orbit, highly inclined
- Busek Ion Thruster system, T = 0.9 mN,  $I_{sp} = 2500 \text{ s}$
- Initial spacecraft mass of 14 kg





















#### Earth Outbound Segment

#### Naturally, trajectories would depart







#### Earth Outbound Segment

# Low-thrust engine and lunar flyby prevents spacecraft from departing Earth vicinity



(b) Earth-Moon Rotating Frame







#### Earth Outbound Segment

# Pre-flyby thrust direction can be used to adjust flyby and apogee conditions



(c) Sun-Earth Rotating Frame













# Phasing and Energy Adjustment Segment

- Identify connection between bounding segments
  - Leverage natural structures from Sun-Earth CR3BP
- Explore transfer arcs via apoapsis maps
  - Assume planar motion
  - Supports prediction of geometry, regions of existence
- Selected arc impacts TOF, communications feasibility





### Poincaré Mapping







Apoapsis Map in Sun-Earth CR3BP, C = 3.00088013













## Lunar Approach and Capture Segment

# Generate approach arcs through application of manifold computation techniques

(a) Moon-Centered Inertial J2000 Frame

(b) Moon-Centered Earth-Moon Rotating Frame









Lunar Approach and Capture Segment

Visualize feasible approach arcs via mapping













#### **Corrections Algorithm**







## Construction of Initial Guess Trajectory

1. Select Earth outbound arc Deployment: Oct 7, 2018



2. Select nearby phasing and energy adjustment arc







## Construction of Initial Guess Trajectory

3. Discretize initial guess from CR3BP 4. Select lunar capture arc nearby in (x,y) and epoch

 $x 10^{5}$ 

x (km)







## Construction of Initial Guess Trajectory

Assemble arcs, connect with short low-thrust arcs









### Corrected Trajectory in Ephemeris

#### Dynamical model: Earth, Sun, Moon point masses; low-thrust







# Trajectory Design Framework

How to design complex path for CubeSat beyond LEO with limited propulsion and constrained deployment state?

- Poincare mapping enables identification of individual transfer arcs to assemble initial guess
- Natural particular solutions offer:
  - Initial guess to connect bounding segments
  - Insight into bounds on motion, transfer geometry
- Supports well-informed and rapid evaluation of complex trajectory design space prior to higher-fidelity analysis





#### Trajectory Design for a Cislunar CubeSat Leveraging Dynamical Systems Techniques: The Lunar IceCube Mission

AAS 17-286

Natasha Bosanac, Andrew Cox, Kathleen C. Howell, David Folta Purdue University and NASA Goddard Space Flight Center