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Motivation 
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   How to design complex path for CubeSat beyond LEO 
   with limited propulsion and constrained deployment state? 
 
•  CubeSats: low-cost, rapidly-developed platform for 

exploration in cislunar space and beyond 
•  Deployment uncertainty and updates, limited propulsion 

create trajectory design challenges 
•  Leverage dynamical systems approach to construct 

framework for rapid and guided transfer design 
 



Lunar IceCube 
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•  6U CubeSat led by Morehead State University 
•  Secondary payload on EM-1 (to launch in late 2018) 
•  Objective: observe water and lunar volatiles 
•  Lunar science orbit, highly inclined 
•  Busek Ion Thruster system, T = 0.9 mN, Isp = 2500 s 
•  Initial spacecraft mass of 14 kg 

Lunar IceCube spacecraft concept 
Credit: Morehead State University 



Trajectory Design Framework 
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Credit: David Folta 
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Earth Outbound Segment 
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Naturally, trajectories would depart 
(a) Sun-Earth Rotating Frame (b) Earth-Moon Rotating Frame 

Earth Moon 

L1 L2 

Earth 

Lunar Orbit 

Deployment: 
Oct 7, 2018 



Earth Outbound Segment 
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Low-thrust engine and lunar flyby prevents spacecraft 
from departing Earth vicinity 

(a) Sun-Earth Rotating Frame (b) Earth-Moon Rotating Frame 

Earth 

Lunar 
Orbit 

Earth Moon 



Earth Outbound Segment 
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Pre-flyby thrust direction can be used to adjust flyby and 
apogee conditions 

(a) Lunar B-Plane 
 

(c) Sun-Earth Rotating Frame 
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Phasing and Energy Adjustment Segment 
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•  Identify connection between bounding segments 
–  Leverage natural structures from Sun-Earth CR3BP 

•  Explore transfer arcs via apoapsis maps 
–  Assume planar motion 
–  Supports prediction of geometry, regions of existence 

•  Selected arc impacts TOF, communications feasibility 



Poincaré Mapping 

Hyperplanes can take physical forms (e.g. y = 0) or 
events (e.g. apsis, time) 
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Examples: 
Koon, Lo, Marsden, Ross 
Villac, Scheeres 
Paskowitz, Scheeres 
Davis, Howell 
Haapala, Howell 



Apoapsis Map in Sun-Earth CR3BP, C = 3.00088013 
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 Prograde initial conditions, encircle Earth once 
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Lunar Approach and Capture Segment 
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Generate approach arcs through application of manifold 
computation techniques 

(a) Moon-Centered Inertial J2000 Frame 
 

(b) Moon-Centered Earth-Moon Rotating Frame 
 

Moon Moon 

L2 



Lunar Approach and Capture Segment 
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Visualize feasible approach arcs via mapping 
(a)  (b)  Epoch (MJD) Epoch (MJD) 

Earth Earth 
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Corrections Algorithm 
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Construction of Initial Guess Trajectory 
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1.  Select Earth outbound arc 
      Deployment: Oct 7, 2018 

2. Select nearby phasing and energy adjustment arc 
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(a)  (b)  CJ,SE 
Days past 

reference epoch 
Prev. apogee Prev. apogee 

Earth Earth 

Construction of Initial Guess Trajectory 
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3. Discretize initial guess from CR3BP 4. Select lunar capture arc nearby in (x,y) and epoch  
(a)  
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Lunar Orbit 

(b)  

Earth 

Lunar Orbit 
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(b)  
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Construction of Initial Guess Trajectory 
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Assemble arcs, connect with short low-thrust arcs 

Earth 

Deployment 

Lunar Flyby 

Discontinuities in  
state, time, mass 



Corrected Trajectory in Ephemeris 
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Dynamical model: Earth, Sun, Moon point masses; low-thrust 
Earth-centered 
Sun-Earth 
rotating frame 

Moon-centered 
Earth-Moon 
rotating frame 

Earth-centered  
inertial frame 
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Trajectory Design Framework 
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How to design complex path for CubeSat beyond LEO 
with limited propulsion and constrained deployment state? 
 
•  Poincare mapping enables identification of individual 

transfer arcs to assemble initial guess 
•  Natural particular solutions offer: 

–  Initial guess to connect bounding segments 
–  Insight into bounds on motion, transfer geometry 

•  Supports well-informed and rapid evaluation of complex 
trajectory design space prior to higher-fidelity analysis 

 



Trajectory Design for a Cislunar CubeSat  
Leveraging Dynamical Systems Techniques:  

The Lunar IceCube Mission 
 

AAS 17-286 

Natasha Bosanac, Andrew Cox, Kathleen C. Howell, David Folta 
Purdue University and NASA Goddard Space Flight Center 


