MULTI-OBJECTIVE OPTIMIZATION OF SPACECRAFT TRAJECTORIES FOR SMALL-BODY COVERAGE MISSIONS

David Hinckley Jr. Jacob Englander Darren Hitt

INTRODUCTION

- Small-body landing and topographical navigation operations require surface information
- Topographical maps require images to be taken that meet a standard of "coverage"
- For a given trajectory, the targeting sequence of images is a nontrivial optimization problem

COVERAGE DEFINITION

α

δ

β

- Emission angle: α
- Incidence angle: β
- Spacecraft azimuth angle: γ
- Solar azimuth angle: δ

COVERAGE IMPLEMENTATION

ea ₁	 ea _n	ia ₁	 ia _m	sca ₁	 sca _q
1	 n	n+1	 m+n	m+n+l	 m+n+q
2 ¹	 2 ⁿ	2 ⁿ⁺¹	 2 ^{m+n}	2 ^{m+n+1}	 2 ^{m+n+q}

Super-Increasing List

NON-DOMINATED SORTING GENETIC ALGORITHM-2

- K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr 2002. doi: 10.1109/4235.996017
- Multi-Objective Evolutionary Algorithm (MOEA)
- Non-Domination and the Non-Dominated Front

TEST PROBLEM

- Body of interest: Bennu
- 45° inclined trajectory initialized at 2 km from center of mass in the equatorial plane
- "Circular" initial velocity
- Timespan of 5 days with image opportunities every 5 minutes
- Objectives:
 - Maximize coverage
 - Minimize required change in rotation rate

TEST TRAJECTORY

MAXIMUM ACHIEVABLE COVERAGE

1750 generation

500 generation

1000 generation

Coverage: 24.2832% Change in rotation rate: 58.8 degrees/s

1750 generation

CONCLUSION

- This implementation of NSGA-2 produced a set of non-dominated solutions that are able to recover 96.2% of the possibly covered area
- This is intended as the inner-loop solver for a Multi-Objective Hybrid Optimal Control Algorithm where the outer-loop optimizes trajectories and the inner-loop optimizes observation schedules for those trajectories
 - This would be a Hybrid Optimal Control architecture where both the inner and outer loops are multi-objective
 - The optimized trajectories alter the bounded possibilities of the inner loop so as to provide the potential for greater coverage and lessened attitude control effort