MULTI-OBJECTIVE OPTIMIZATION OF SPACECRAFT TRAJECTORIES FOR SMALL-BODY COVERAGE MISSIONS

David Hinckley Jr. Jacob Englander Darren Hitt
INTRODUCTION

- Small-body landing and topographical navigation operations require surface information.
- Topographical maps require images to be taken that meet a standard of “coverage.”
- For a given trajectory, the targeting sequence of images is a nontrivial optimization problem.
COVERAGE DEFINITION

• Emission angle: α
• Incidence angle: β
• Spacecraft azimuth angle: γ
• Solar azimuth angle: δ
COVERAGE IMPLEMENTATION

Super-Increasing List

<table>
<thead>
<tr>
<th>ea_1</th>
<th>$...$</th>
<th>ea_n</th>
<th>ia_1</th>
<th>$...$</th>
<th>ia_m</th>
<th>sca_1</th>
<th>$...$</th>
<th>sca_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$...$</td>
<td>n</td>
<td>$n+1$</td>
<td>$...$</td>
<td>$m+n$</td>
<td>$m+n+1$</td>
<td>$...$</td>
<td>$m+n+q$</td>
</tr>
<tr>
<td>2^1</td>
<td>$...$</td>
<td>2^n</td>
<td>2^{n+1}</td>
<td>$...$</td>
<td>2^{m+n}</td>
<td>2^{m+n+1}</td>
<td>$...$</td>
<td>2^{m+n+q}</td>
</tr>
</tbody>
</table>
NON-DOMINATED SORTING GENETIC ALGORITHM-2

• Multi-Objective Evolutionary Algorithm (MOEA)

• Non-Domination and the Non-Dominated Front
TEST PROBLEM

• Body of interest: Bennu
• 45° inclined trajectory initialized at 2 km from center of mass in the equatorial plane
• “Circular” initial velocity
• Timespan of 5 days with image opportunities every 5 minutes
• Objectives:
 • Maximize coverage
 • Minimize required change in rotation rate
MAXIMUM ACHIEVABLE COVERAGE
RESULTS

1750 generation
RESULTS

500 generation

1000 generation
RESULTS

Coverage: 24.2832%
Change in rotation rate: 58.8 degrees/s
RESULTS

1750 generation
CONCLUSION

• This implementation of NSGA-2 produced a set of non-dominated solutions that are able to recover 96.2% of the possibly covered area.

• This is intended as the inner-loop solver for a Multi-Objective Hybrid Optimal Control Algorithm where the outer-loop optimizes trajectories and the inner-loop optimizes observation schedules for those trajectories.
 • This would be a Hybrid Optimal Control architecture where both the inner and outer loops are multi-objective.
 • The optimized trajectories alter the bounded possibilities of the inner loop so as to provide the potential for greater coverage and lessened attitude control effort.