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Two kinds of color mixture

Additive Subtractive (multiplicative)
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Metameric spectra ‘ }

mapping via color-matching functions

Space of colors (3 dim.)

subspaces of metamers

Space of spectra (inf. dim.)
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Color algebra

Additive color mixture perfectly described

by vector addition of colors
a+b=D>b-+a,
(a+b)+c=a+ (b+c)

Subtractive color mixture NOT well-defined from input colors,
SO

we must invent the color product operator!

a®b
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The ambiguity of metamers { }

Normal In-phase comb out-of-phase comb
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General approach: spectral model { }

inverse mapping via inference

Space of colors (3 dim.)

3-D subspace

Space of spectra (inf. dim.)
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Example: linear spectral models ‘ }

spectra

3-D linear subspace

coefficients
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History of linear models ‘ }

m Sallstrom (1973)
® Brill (1978)

W Buchsbaum (1980)
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History of linear models (cont.) 4

W Maloney and Wandell (1986)

Color constancy: a method for recovering surface spectral
- reflectance

Laurence T. Maloney* and Brian A. Wandell
Department of Psychology, Stanford University, Stanford, California 94305

Received July 18, 1985; accepted August 9, 1985

Human and machine visual sensing is enhanced when surface properties of objects in scenes, including color, can be
reliably estimated despite changes in the ambient lighting conditions. We describe a computational method for
estimating surface spectral reflectance when the spectral power distribution of the ambient light is not known,
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History of linear models (cont.) 4)

W Maloney (1986)

Color constancy: a method for recovering surface spectral
reflectance

Evaluation of linear models of surface spectral reflectance
with small numbers of parameters

Laurence T. Maloney
Human Performance Center, University of Michigan, 330 Packard Road, Ann Arbor, Michigan 48104

Received March 10, 1986; accepted June 27, 1986

Recent computational models of color vision demonstrate that it is possible to achieve exact color constancy over a
limited range of lights and surfaces described by linear models. The of these putational models hinges
on whether any sizable range of surface spectral reflectances can be described by a linear model with about three
parameters. In the first part of this paper, I analyze two large sets of empirical surface spectral reflectances and
examine three conjectures concerning constraints on surface reflectance: (1) that empirical surface reflectances fall
within a linear model with a small number of parameters, (2) that empirical surface reflectances fall within a linear
model composed of band-limited functions with a small number of parameters, and (3) that the shape of the
spectral-sensitivity curves of human vision enhance the fit between empirical surface reflectances and a linear
model. I conclude that the first and second conjectures hold for the two sets of spectral reflectances analyzed but
that the number of parameters required to model the spectral reflectances is five to seven, not three. A reanalysis of
the empirical data that takes human visual sensitivity into account gives more promising results. The linear models
derived provide excellent fits to the data with as few as three or four parameters, confirming the third conjecture.
The results suggest that constraints on possible surface-reflectance functions and the “filtering” properties of the
shapes of the spectral-sensitivity curves of photoreceptors can both contribute to color constancy. In the last part
of the paper I derive the relation between the number of photoreceptor classes present in vision and the “filtering”
properties of each class. The results of this analysis reverse a conclusion reached by Barlow: the “filtering”
properties of human photoreceptors are consistent with a trichromatic visual system that is color constant.
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History of linear models (cont.)

w Jeff makes a foray in '91

Sixteenth Annual Interdisciplinary Conference

Teton Village, Jackson, Wyoming
January 20 - 25, 1991
Organizer: George Sperling, New York University

Proceedings

Wednesday, January 23, 4:00 - 8:00 p.m. Perceptual Processes

Bart Anderson, Harvard, Disambiguating Ambiguity in 3D. .\" Will mail his registration to NYU - v
David Brainard, U. Rochester, Sampling and Reconstruction in Human Spatial Vision.

.\" Cancelled, kid's illness: Steve Zucker, McGill U., Contrast, Contours and Cytochrome Oxidase.
Jitendra Malik, UC Berkeley, Curvilinear Grouping and Texture Segregation.

.\" Jim Enns, U. British Columbia, Rapid Recovery of Three-Dimensional Structure in Early Vision.
Terry Boult, Columbia. Symmetry and skew symmetry.

Jeff Mulligan, NASA-Ames , A Model of Subtractive Color Mixture and Color Transparency.
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History of linear models (cont.) 4)

W D'Zmura (1992)

Color constancy: surface color from changing illumination

Michael D'Zmura

Department of Cognitive Sciences and Irvine Research Unit in Mathematical Behavioral Sciences,
University of California, Irvine, Irvine, California 92717

' Received September S5, 1991; revised manuscript received October 30, 1991; accepted November 13, 1991

Viewing the lights reflected by a set of three or more surfaces, a trichromatic visual system can recover three
color-constant descriptors of reflectance per surface if the color of the surfaces’ illuminant changes. This
holds true for a broad range of models that relate photoreceptor, surface, and illuminant spectral properties.
Changing illumination, which creates the problem of color constancy, affords its solution.
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History of linear models (cont.)

W lverson and D'Zmura (1994)

Color constancy: surface color from changing illumination

Color constancy. 1. Basic theory of two-stage linear
recovery of spectral descriptions for lights and surfaces

Color constancy. II. Results for two-stage linear recovery
of spectral descriptions for lights and surfaces

Color constancy. IIl. General linear recovery of
spectral descriptions for lights and surfaces

Criteria for color constancy in trichromatic
bilinear models

Geoffrey Iverson and Michael D'Zmura

Department of Cognitive Sciences and Institute for Mathematical Behavioral Sciences, University of California, Irvine,
Irvine, California 92717

Received July 20, 1993; revised manuscript received January 26, 1994; accepted January 26, 1994
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Bilinear color product 4)

a®b=c
= (m|fufv)

— u'Pv
= (B !a)TPB'b
= aT(B"})TPB~!b

pk = (m¥| ;)
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Bilinear color division

C — a. ® b — Tab Ta — aT(B—l)TPB—l
o1

b=T, ¢

b=c®a

division = "discounting the illuminant”
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Associativity

?

(a®b)®c=a® (b®c)

Associative law can fail for the linear model

Approximation required when product spectra

lie outside the model space

Closure under multiplication guarantees associativity
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A problem with the linear model

Not all combinations are legal spectra
Spectral values cannot be negative

Choice of basis functions determines valid gamut
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Example: RGB gamut

Example: RGB gamut
approximate ITU Rec. 2020

A=Al < AA

0.8 “Z
fi(A) = ,
> 06 0 otherwise
N fii(A) = a;fi(A),
fii(A) =0 i # ]
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RGB Spectral Model

YELLOW light on CYAN local colour gives GREEN

il -FE—-mn

(©) David Briggs 2007

from http://www.huevaluechroma.com/051.php

OpenGL spec. does not specify!
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Example: Quadratic gamut < }

0.8

N\

isssSN\\
Ut NN\

/ W‘W
/ T

~ .

0'6 — 0.8

0.8

0.6 -

=

0.6 |

CIEy

0.4 | 0.4

relative power
relative power

0.4 —

0.2

0.2

0l = =
N 0 T T T T T T T !
0.2 350 400 450 500 550 600 650 700 750 350 400 450 500 550 600 650 700 750

wavelength (nm) wavelength (nm)

CIE x

1ofl 1/22/17, 6:02 PM



Example: Quadratic gamut file:///Users/jmulliga/working/public_html/home/presentations/aic17/gamut3.htm

Example: Quadratic gamut 4 }
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Example: Sinusoidal gamut 4 }
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Log-linear spectral models

3
log fu Zufz fu:He“fi
i=1

Suggested by Golz and MaclLeod (2002), MacLeod and Golz
(2003)

Linear function space in log energy
Closed under multiplication - associative law holds
quadratic — Gaussian (and inverse-Gaussian)

sinusoidal — Von Mises
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Log-linear spectral models (cont.) 4)

(m|f)

spectra

coefficients
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Example: Gaussian gamut ‘ }
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Example: Von Mises gamut { }
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Example: Von Mises gamut { }
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Advantages of the Von Mises model

More physically plausible than RGB
Can represent all colors

Nonlinear wavelength transformation can generate

individual differences (Abney effect, unique hue settings)

Computational issues not solved - neural network?
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Summary

A computational framework for an algebra of colors

to predict additive and subtractive color mixture
Applications to graphics and perception

Log-linear spectral models provide best performance
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