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Acronyms
• 10 gigabit attachment unit (XAUI XGS)
• Advanced Encryption Standard (AES)
• Advanced extensible Interface (AXI)
• Advanced High-performance Bus (AHB)
• Agile Mixed Signal (AMS)
• ARM Holdings Public Limited Company (ARM)
• Block random access memory (BRAM)
• Block triple modular redundancy (BTMR)
• Built-in-self-test (BIST)
• Cache Coherent Interconnect (CCI)
• Combinatorial logic (CL)
• Commercial off the shelf (COTS)
• Complementary metal-oxide semiconductor 

(CMOS)
• Computer aided design (CAD)
• Controller Area Network (CAN)
• Device under test (DUT)
• Digital Signal Processing (DSP)
• Direct Memory Access (DMA)
• Distributed triple modular redundancy (DTMR)
• Double Data Rate (DDR3 = Generation 3; DDR4 =  

Generation 4)
• Edge-triggered flip-flops (DFFs)
• Equipment Monitor And Control (EMAC)
• Error-Correcting Code (ECC)
• Field programmable gate array (FPGA)
• Floating Point Unit (FPU)
• General purpose input/output (GPIO)
• Global Industry Classification (GIC)
• Global triple modular redundancy (GTMR)
• Hardware description language (HDL)
• High Performance Input/Output (HPIO)
• High Pressure Sodium (HPS)
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• High Speed Bus Interface (PS-GTR)
• Input – output (I/O)
• Intellectual Property (IP)
• Inter-Integrated Circuit (I2C)
• Internal configuration access port (ICAP) 
• Joint test action group (JTAG)
• Lightwatt High Pressure Sodium (LW HPS)
• Linear energy transfer (LET)
• Local triple modular redundancy (LTMR)
• Look up table (LUT)
• Low Power (LP)
• Low-Voltage Differential Signaling (LVDS)
• Memory Management Unit (MMU)
• Microprocessor (MP)
• Multi-die Interconnect Bridge (EMIB)
• MultiMediaCard (MMC)
• Multiport Front-End (MPFE)
• Not OR logic gate (NOR)
• Operational frequency (fs)
• Oscillator (RC OSC)
• Peripheral Component Interconnect Express 

(PCIe)
• Personal Computer (PC)
• Phase locked loop (PLL)
• Phase Locked Loop (PLL)
• Physical layer (PHY)
• Physical medium attachment sub-layer (PMA)
• Power on reset (POR)
• Probability of flip-flop upset (PDFFSEU)
• Probability of logic masking (Plogic)
• Probability of transient generation (Pgen)

• Probability of transient propagation (Pprop)
• Processor (PC)
• Radiation Effects and Analysis Group (REAG)
• Radiation Tolerant (RT)
• Secondary Control Unit (SCU)
• Secure Digital (SD)
• Secure Digital embedded MultiMediaCard

(SD/eMMC)
• Secure Digital Input/Output (SDIO)
• Serial Advanced Technology Attachment (SATA)
• Serial Peripheral Interface (SPI)
• Serial Quad Input/Output (QSPI)
• Serializer/deserializer (Serdes EPCS)
• Single event functional interrupt (SEFI)
• Single event latch-up (SEL)
• Single event transient (SET)
• Single event upset (SEU)
• Single event upset cross-section (σSEU)
• Spatial-Division-Multiplexing (SDM)
• Static random access memory (SRAM)
• System Memory Management Unit (SMMU)
• System on a chip (SOC)
• Transceiver Type (GTH/GTY)
• Transient width (τwidth)
• Triple modular redundancy (TMR)
• Universal Asynchronous Receiver/Transmitter 

(UART)
• Universal synchronous Receiver/Transmitter 

(USRT)
• Universal Serial Bus (USB)
• Universal Serial Bus On-the-go (USB OTG)
• Watchdog Timer (WDT)
• Windowed Shift Register (WSR)
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Problem Statement

• For many years, intellectual property (IP) cores 
have been incorporated into field programmable 
gate array (FPGA) and application specific 
integrated circuit (ASIC) design flows.

• However, the usage of large complex IP cores 
were limited within products that required a high 
level of reliability.

• This is no longer the case.  IP core insertion has 
become mainstream …including their use in 
highly reliable products.

• Due to limited visibility and control, challenges 
exist when using IP cores and subsequently 
compromise product reliability.
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IP Core Terminology Regarding FPGA 
Insertion

• IP cores are blocks of logic elements:
– Reduce Time-to-Market.
– Eliminate Design Risks.
– Reduce Development Costs.

• IP cores can be “Soft” or “Hard.”
– Terminology has nothing to do with radiation 

susceptibility.
– Soft Core: IP logic blocks are implemented in the 

system programmable logic area (user area).  They are 
generally flexible in order to meet user needs.

– Hard Core: IP logic are embedded in the FPGA device.  
They have limited flexibility or none at all.
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Microsemi RTG4 FPGA and Its 
Embedded IP Cores
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Figure is courtesy of Microsemi

Figure does not 
show user 
programmable 
logic area.

Multi-Standard GPIO
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Soft IP Core Insertion Flow
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Select or Buy IP Core

Insert IP core into FPGA 
programmable logic

Synthesize Design to 
produce gate-level-netlist

Place and route gate-
level-netlist

Create 
Configuration File

Soft IP can can in the form of 
HDL or gate-level-netlists.

HDL Hardware description language
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Pros of IP Core Insertion 
• IP Cores are very easy to use.
• As an example, a computer system 

can be designed in minutes by simply 
pressing buttons within a CAD tool.

• Students are graduating with IP core 
insertion experience.

• Design development costs less:
– Lots of complexity with very little effort.
– Design cycle time.
– Reusability reduces verification effort 

(???????)
– Employees require less expertise, hence 

less of a paycheck.
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CAD computer aided design

For complex, critical applications, the assumptions that IP 
cores will cost less can be a myth.
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Cons of IP Core Insertion in Critical 
Applications 

• IP Cores have limited visibility:
– Difficult to verify and manipulate.
– Design might not follow proper design 

rule protocol (but you will not know).
• If mitigation is required, it can be 

compromised.
• Design development costs less???:

– Design cycle time can be elongated 
because selected user mode is not 
mainstream. Never used/tested before.
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• Reusability can be compromised:
– Once an IP is custom configured, it is no longer “reusable logic.”  

For critical application standards, verification effort is increased.
– Once an IP is inserted into a unique design it is no longer “reusable 

logic.” For critical application standards, verification effort is 
increased.
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Challenges: IP Core Insertion in Critical 
Applications

• Beware – pushing a button on a CAD tool can be 
misleading.

• Does the core follow proper synchronous design 
methodology?

• How has the design been vetted and verified prior to 
your usage?

• Research must be performed in order to understand if 
the IP can reliably be inserted into your design:
– Timing characteristics – can the IP perform at the missions 

specified speed?
– Can the IP core fit into the device with all other necessary 

logic?
– Are the I/O of the IP compatible with your device or the other 

components you have in your device?
– Does the IP require mitigation?
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Challenges: IP Core Verification in 
Critical Applications

• Design reviews require design to be parsed by a 
team of specialists.  
– Some IP cores are so complex, they are close to impossible 

to parse.
– Some IP cores are in gate-netlist form instead of HDL.  They 

are also close to impossible to parse.
– Some IP cores are locked and cannot be viewed by any 

individual.
• Although datasheets are available, users will rely on 

IP core models and blind testing.
• Point is, because of limited visibility and complexity, 

IP are hard to verify.
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• Enhanced verification techniques 
exist but still have limitations 
regarding black box (like) IP.
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IP Core Mitigation in Critical Applications:
Dual Redundancy (DR) and Triple Modular 

Redundancy (TMR)
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Stop, investigate, note limitations 
before pushing that CAD 
BUTTON!!!!!!



To be presented by Melanie Berg at the Microelectronics Reliability & Qualification Working Meeting (MRQW), El Segundo, CA February 7-8, 2017

Dual Redundant IP Cores
• There are no correction 

mechanisms.  
• If the DR comparator detects a 

bad compare, the system stops 
and action is taken.

• Pro: if designed correctly, the 
system can be masked from IP 
core failures.

• Con: the probability of failure 
(hardware-reliability or single 
event upset (SEU)) is at least 
doubled.  
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– Although the system can be masked, system availability is 
decreased.

– Depending on the critical application, the reduction in availability 
can compromise adhering to mission requirements. 
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How To Insert TMR into A Design:
FPGA User Design Flow

Create 
Configuration

Place and Route

Output of 
synthesis is a 
gate-level netlist
that represents 
the given HDL 
function.

Functional 
Specification

HDL

Synthesis

HDL: Hardware description language
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TMR can be 
inserted during 
synthesis or post 
synthesis.

If inserted post 
synthesis, the 
gate-level netlist is 
replicated, ripped 
apart, and voters + 
feedback are 
inserted.

TMR can be written 
into the HDL.  
Generally not done 
because too 
difficult.
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Various TMR Schemes: Different Topologies
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Block diagram of block 
TMR (BTMR): a complex 
function containing 
combinatorial logic (CL) 
and flip-flops (DFFs) is 
triplicated as three 
black boxes; majority 
voters are placed at the 
outputs of the triplet. 

Block diagram of local 
TMR (LTMR): only flip-
flops (DFFs) are 
triplicated and data-
paths stay singular; 
voters are brought into 
the design and placed 
in front of the DFFs. 

Block Diagram of 
distributed TMR (DTMR): 
the entire design is 
triplicated except for the 
global routes (e.g., clocks); 
voters are brought into the 
design and placed after the 
flip-flops (DFFs).  DTMR 
masks and corrects most 
single event upsets (SEUs). 
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IP Cores and Block Triple Modular 
Redundancy: BTMR

• Need Feedback to Correct
• Cannot apply internal correction from voted outputs
• If blocks are not regularly flushed (e.g., reset), Errors 

can accumulate – may not be an effective technique
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IP Core

Can Only 
Mask 
Errors

3x the error rate with 
triplication and no 
correction/flushing

Copy 1

Copy 2

Copy 3
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IP Core

IP Core
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Reliablity across Fluence: Simplex 
System versus BTMR Version

System No TMR
BTMR System

Explanation of BTMR Strength and Weakness 
using Classical Reliability Models

Operating a BTMR 
design in this time 
interval will provide 
an increase in 
reliability.
However, over time, 
BTMR reliability drops 
off faster than a 
system with No TMR.
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Reliability for 1 
block (Rblock)

Reliability for 
BTMR (RBTMR)

Mean Time to 
Failure for 1 
block (MTTFblock)

Mean Time to 
Failure BTMR 
(MTTFBTMR)

e- λt 3 e- 2λt-2 e- 3λt 1/ λ (5/6 λ)= 0.833/λ
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BTMR Bottom Line

• How long does your BTMR system need to operate 
relative to the MTTF for one of its unmitigated 
blocks?

• Over time, a BTMR system is less reliable than an 
unmitigated system.

• Adding more replicated blocks (e.g., N-out-of-M) 
system will only increase the reliability during the 
short window near start time.  However, overtime, 
the reliability of an N-out-of-M system will fall faster 
as M (the number of replicated blocks) grows.

• Unfortunately BTMR is the most common means of 
TMR used with IP cores.  Users are not getting the 
level of protection that they require.
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SCS750 BTMR μPs(Maxwell) GAIA: 
Performance Is Lower than Assumed 
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GAIA is an European Space Agency 
(ESA) mission that is expected to chart 
our Galaxy 

PowerPC

PowerPC

PowerPC

(1) The faulty μP is masked; 
(2) System stalls and then is 
flushed;
(3) Bring system up with all μP
synchronized.
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DTMR and LTMR Strategies Provide 
Correction and Hence Increase 

Availability and Reliability
• Depending on the target FPGA, DTMR or LTMR can be 

suitable mitigation strategies:
– LTMR for Microsemi FPGA products (Do not use in SRAM 

based FPGAs)
– DTMR for SRAM based FPGA products (e.g., Xilinx).

• Depending on your TMR insertion tool , some IP cores can 
have LTMR or DTMR inserted during the synthesis 
process.

• Most tools are still having problems with TMR insertion 
into IP.  This is another reason why BTMR is so popular… 
it’s simple to implement.

• Warning, there are some IP cores that are black boxes and 
no tool can insert LTMR or DTMR.
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Concerns to be taken into account prior to IP 
selection.
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