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Outline

• Basic Thermodynamics of Pressure Gain Combustion
• Benefits Thereof
• PGC Approaches
• The Rotating Detonation Approach
• Challenges

Why We Need Basic Research
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Basic Thermodynamics-RDE is PGC
Pressure Gain Combustion (PGC):

A fundamentally unsteady process whereby gas expansion by heat
release is constrained, causing a rise in stagnation pressure and
allowing work extraction by expansion to the initial pressure.

Practical PGC Devices for Propulsion and Power:
• Are periodic
• Are fixed volume
• Produce work availability directly from chemical 

energy

In a Nutshell:
A Lenoir-like Cycle is Executed Without
Pistons, (and with few moving parts)

Patented 1860
First commercially produced I.C. engine

Lenoir Cycle:
• Isochoric Heat Addition
• Isentropic Expansion
• Isobaric Heat Rejection
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Basic Thermodynamics-Lenoir Cycle

P/P3=3.8 momentarily

PGC KE

First 20% of charge

Last 40% of charge

PGC Features
• CV produces availability
• Availability manifested as KE
• KE is non-uniform 

(unsteady)
• High, but brief pressures & 

temperatures
• Same mass averaged 

temperature as conventionalConfinement During Combustion Is Good

=1.4
ER=0.37
T3=1000 R
Fuel: generic hydrocarbon Next 20% of charge

Slow chamber fill with 
reactant

Instantaneous reaction at 
constant volume

Isentropic chamber 
blowdown to fill pressure

Ideal valve

Ram air

Ideal Nozzle Ambient
pressure

Low High

Temperature

Notional PGC Device
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Benefits-Air Breather
PGC Features

• Compression up front and 
additional expansion at the back 
yields Atkinson/Humphrey cycle.

• Significant decrease in SFC
• Significant increase in specific 

power or specific thrust
• May allow ‘effective’ OPR’s that 

are difficult to achieve with 
conventional means for a given 
engine class
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Benefits-Rocket

Assumptions:
• Calorically perfect gas 

(excluding CEA)
• Adiabatic
• Ideal Nozzle
• Sea level exhaust pressure
• Lossless injectors w/ infinite 

bandwidth
manifolds

injectors

chamber nozzle

PGC Rocket at Pmanifold of 488 psia Delivers Same
Isp as Conventional Rocket at Pmanifold of 3000 psia
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Conventional Rocket
PGC Rocket
CEA

Gaseous C2H4/O2, ER=1.0
=1.126
Rg=49.84 ft-lbf/lbm/R
Tinit=520 R

Smaller or Even No Pumps  Better T/W

Tyranny of the Rocket Equation
“When making a rocket that is near 
90% propellant, small gains 
through engineering are literally 
worth more than their weight in 
gold.”

-Don Pettit



National Aeronautics and Space Administration

www.nasa.govDARPA RDE 2016 7

PGC Approaches
Pulse Detonation

• Axially propagating detonation wave 
replaces CV process

• Typically mechanically valved at inlet 
• Usually envisioned as a cluster of regularly 

firing tubes
• Per tube frequencies on order of 100 Hz.
• Substantial history of efforts
• Current efforts exist

True Constant Volume
• Confinement provided by 

valves at both ends 
• Operational versions exist

Holzwarth Explosion Turbine

IC Wave Rotor

Rotating Detonation
is Not the Only
Game in Town

G.E. Global Research Center 2005

PDC



National Aeronautics and Space Administration

www.nasa.govDARPA RDE 2016 8

PGC Approaches
Rotating Detonation

• Circumferentially propagating detonation wave 
replaces CV process

• Typically aero-valved at inlet 
• Basically an annulus with a nozzle
• Operating frequencies on order of 1000 Hz.
• Smaller history of efforts

Other
• Resonant Pulse 

Combustion
• See Kan, Heister, 

et. al.

Source: Schwer, AIAA 2011-581
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ss
ur

eDemonstrated pressure gain during closed 
loop operation in gas turbines using liquid 
fuels

Resonant Pulse Combustor

All Do The Same Basic Thing; All Have Pros and Cons
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Why the Rotating Detonation Approach?
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Gaseous C2H4/O2, ER=1.0

A Closer Look at an Example Rocket Cycle
(using a ‘validated’ code)

RDE with Athroat/ARDE=0.8 at Exit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

1

2

3

4

A
xi

al
 M

ac
h

y

det. direction

Ideal nozzle exit profile

detonation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

5000

10000

15000

head end profile

A
xi

al
 D

ire
ct

io
n

Circumferential Direction

200
220
240
260
280
300
320
340
360
380
400

0 1000 2000 3000

S
pe

ci
fic

 Im
pu

ls
e,

 s
ec

.

Pmanifold, psia

Conventional Rocket
PGC Rocket
CEA
Ideal RDE

deflagration, fill Mach, oblique 
wave, circumferential KE, etc.

Features
• Impressive performance
• Compact combustor L/D 

near 1 (and possibly << 
less!)

• Continuous operation –
no sparking or crossover 
tubes, no DDT devices

Potential Exist for Very Compact, High Efficiency, 
High T/W Engines, With Fewer Parts
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Challenges
The ‘Real’ WorldSimulated RDE in a T-63

• Non-optimized, 
laboratory RDE

• Intended as a turbine 
interaction test, not a 
RDE performance test

• Unusual high back 
pressure scenario

• Used here because it is 
illustrative

Current RDE Simulation Shows PR<1.0; 
Configuration Changes Could Yield PR>1.2
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detonation

• 45% RDE inlet total pressure 
drop

• 18% RDE inlet backflow

• RDE lengthlong residence 
time, excess heat transfer, 
dissipation of KE

• RDE exit flow is all subsonic with 
some inlfow

REMEMBER: RDE’s
Have Only Been
Truly Operational for
4-5 Years



National Aeronautics and Space Administration

www.nasa.govDARPA RDE 2016 11

Challenges
Why We Need Basic Research

• RDE’s are difficult to analyze
• Highly coupled
• Hard to know what causes what

• Conventional measurements are tough to make
• Validated codes are few and often unavailable

• And murderously hard to validate (see above)
• Need parametric variation capability 

• Significant improvement requires practical
understanding of underlying processes
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deflagration, fill Mach, oblique 
wave, circumferential KE, etc.

h-xfer, viscous, inlet 
losses similar to lab exp.

w/o nozzle

GHKN, CH4/O2
• Processing liquid fuels
• Throttling
• Geometric effects (min. length, min. diameters, max. annulus width, annular vs. axisymmetric, etc.)
• Wave number control (small effect now, but possibly critical with optimized designs)
• Unsteady injection and mixing (rapid mixing may not be the ultimate goal)
• Unsteady nozzle design (many modeled operating points show mixed sub- & supersonic flow)
• Heat transfer (high temp., density, & velocity multi-megawatt heat flux & associated lost performance)
• Low loss/High diodicity inlets (models of some current designs indicate >20% backflow and 50% p/p)

• More minds are needed 
• Understanding these devices enough to be useful takes time, not just $

• Practical application studies are essential
• What is the best way to utilize the technology, and who should determine this?

Challenges Are Real, Typical for TRL, And Tractable
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Concluding Remarks

• Pressure Gain Combustion (PGC) can significantly enhance 
propulsion and power system performance.

• Rotating Detonation Engine (RDE) technology may be a 
particularly effective way to affect PGC.

• Significant strides have been made with relatively limited 
resources, but a sustained effort at basic practical process 
understanding is needed in order to fully exploit RDE 
technology.

• Coordination and cooperation between organizations is key, 
as is growing the community.
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