Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

Jennifer Donaldson

NASA Goddard Space Flight Center

Workshop on Emerging Technologies for Autonomous Space Navigation, 2017

www.nasa.gov

NEXT GENERATION BROADCAST SERVICE (NGBS)

Objectives

- Current: space communications achieved through the Near Earth Network (NEN) ground terminals and the Space Network (SN)
 - The SN is composed of the Tracking and Data Relay Satellites (TDRS)
 - Requires service scheduling by Mission Operations Centers (MOCs) days in advance
 - Few spacecraft perform autonomous, on-board navigation
- Improved, future network
 - Enables user-hailed services that are autonomously scheduled by the network
 - Provides spacecraft with radiometrics and data to support autonomous, on-board navigation
 - Expands service volume

Service Description

- NGBS provides unique signals and data to enhance user operations and enable autonomous onboard navigation
- NGBS service consists of:
 - Global coverage via TDRSS S-band multiple access forward (MAF) service
 - Unscheduled, on-demand user commanding
 - Space environment/weather: ionosphere, Kp index for drag, alerts, effects of Solar Flares/CMEs
 - Earth orientation parameters
 - TDRS ephemerides and maneuver windows
 - PN ranging code synchronized with GPS time for time transfer, one-way forward Doppler and ranging
 - Global differential GPS corrections
 - GPS integrity

NGBS has direct benefits in the following areas:

- Science/payload missions
- SCaN/Network operations
- TDRSS performance
- GPS and TDRSS onboard navigation users
- Conjunction Assessment Risk Analysis
- Capabilities consistent with the modern GNSS architecture

NGBS Benefits to Current and Future Users

- A broadcast beacon service has the ability to improve the level of autonomous operations for users
 - Reduces time interval for coordinating Target of Opportunity observations, increases mission science return
 - Facilitates autonomous or MOC-in-the-loop re-pointing for science observations
 - Provides common information for situational awareness
 - Provides unscheduled, continuously-available alternative to GPS navigation, or supplements and provides resiliency to GPS solution
- Many of our current and future science missions study transient phenomena (gamma-ray burst, gravitational waves)
- Investigation of these events requires coordinated observations between ground and space-based assets. Fast communication between observatories is essential.
- Identified several missions that would benefit from this service:
 - Current missions: Fermi and Swift
 - MIDEX proposals: Survey and Time-domain Astronomical Research Explorer (STAR-X) and Transient Astronomy Observatory (TAO).
- Network benefits
 - Demand Access Service (DAS) & NGBS enable User Initiated Service (UIS)
 - Reduces burden on the network for radiometric tracking scheduled time
 - Enables precise, autonomous navigation for the relay

Signal Structure

Inphase Channel (Data)

- PN_s 1023 chips; PN_L 16368 chips
- 2048 PN_s sequences/second, 128 PN_L sequences/second
- 2.095104 Mcps (1023x2048) spreading rate
- Rational timebase, 2105.579520 MHz (1023x2048x1005) carrier frequency

Quadrature Channel (Pilot)

- 10:1 power ratio on I and Q channels (Q is a dataless pilot)
- 1024 bps, CCSDS LDPC (2048, 1024) rate ½ encoded
- Designed for acquisition with zero apriori information (lost in space)
- Designed for weak signal tracking

Frame Structure

					1
Message	Label	Size (bits)	Quantity	Refresh Interval (s)	Data Volume
SM	ASM	64	1	1	640
/eek	WK	16	1	1	160
econd of Week	SOW	24	1	1	240
rame ID	FID	8	1	1	80
PS Integrity	А	184	10	10	1840
PS Differential Corrections	В	72	32	10	2304
DRS Ephemerides	С	200	10	10	2000
ser Commands	D	200	4	10	800
pares	E	200	4	10	800
pace Environment	F	152	3	10	456
onsphere	G	200	1	10	200
olar flux	Н	128	1	10	128
arth Orientation	I	48	1	10	48
DRS Health & Safety	J	200	1	10	184
nused	U	200	1	10	200
RC	CRC	16	1	1	160
				Totals	10240

Data Message Allocations

- Data message in a framed structure, 10 seconds to broadcast entire message.
- ~80 bps on average allocated to user command. With spares & unused, 180 bps.
- Goal to achieve 2048 bps data rate. If achieved, 1024 bps will be allocated for user commands.

SYSTEM ARCHITECTURE

Space Element

- 2nd/3rd gen TDRS used to broadcast NGBS beacon
- MA forward (MAF) array can be split to provide two simultaneous MAF services
 - Current Space Network ground system does not support this capability
- MA return (MAR) array supports DAS
- In concert with DAS, NGBS will provide a unique anytime/anywhere two-way communications channel

Ground Element

- Data Integrator (DI) located at WSC
- Message Formatters (MF) located in each NGBS enabled ground system

NASA

User Element

CURRENT STATUS

Coverage Analysis

Simulation Parameter	Options
User Orbit	Low inc LEO, SSO LEO
User Antenna	-3 dB ISO, GPS, MMS, LADEE
MAF Configuration	4 Element
NGBS Constellation	3 nodes, 5 nodes

- Static link parameters combined with dynamic STK/MATLAB analysis
 - NGBS & user antenna models
 - Slant range
- Analyzed all combinations of NGBS constellation, user orbit, and user antenna models

Coverage Analysis

	NGBS Configuration	3 Beacon	5 Beacon	3 Beacon	5 Beacon
Orbit	User Antenna Model	% Availability		Outage Duration (Minutes) 90% Bound	
ISS	GPM	98.46	99.80	0.45	0.45
ISS	-3 dB ISO	100.00	100.00	0.00	0.00
ISS	MMS	99.97	99.97	0.00	0.00
ISS	LADEE	100.00	100.00	0.00	0.00
SSO LEO	GPM	92.16	97.94	0.67	0.45
SSO LEO	-3 dB ISO	100.00	100.00	0.00	0.00
SSO LEO	MMS	100.00	100.00	0.00	0.00
SSO LEO	LADEE	100.00	100.00	0.00	0.00

- Analysis incorporates 36 dBW peak EIRP, conservative user terminal G/T
- 3 TDRS constellation can provide global coverage with a 1024 bps data rate
- 1024 bps link is robust, 2048 has positive (slight) margin

NGBS Demo #1 – Global Beam

SCaN TestBed used to validate EIRP contours

- Objective 1: validate 4 element array beam pattern and peak EIRP
- Objective 2: quantify 2nd gen TDRS MAF EIRP margin

Ground measurements taken at White Sands Complex (WSC) & Glenn Research Center (GRC)

- Used TDRS-12 to perform live sky demonstration of 4-element MAF beacon configuration
 - Ground observations at WSC and GRC confirmed MAF phased-array model and EIRP predicts
 - TDRS-12 payload was stable during 48 hr 4-element MAF test
 - Testing validated peak EIRP (>36.0 dBW) and beacon pattern for 2nd and 3rd generation TDRS
- Ready to move onto further demos with modulated signals

Ground Element

• SN Ground Sustainment System (SGSS) architecture will:

- Enable dual MAF capability built into 2nd and 3rd generation TDRS
- Allow for low cost insertion of NGBS ground system hardware
- Reduce one-way forward ranging errors
- Data Integrator (DI) and Message Formatter (MF) software under development
- User commands transmitted through the system
- TDRS ephemeris and space weather data sources were streamed from recorded data
- Data ingest of real time GDGPS data from JPL
- Data was modulated on a S-band carrier, demodulated, and decoded

Real time data connection from JPL

SGSS Architecture

Integrated Comm & Nav User Terminal

Roadmap

- Strategic opportunity exists:
 - Launch of TDRS-M in Aug 2017 will provide 6 NGBS capable spacecraft
 - SGSS necessary for NGBS ground implementation
 - STP-H6 provides a low-cost opportunity to fly GPS portion of the NGBS user terminal, missed an opportunity to demonstrate NGBS on orbit
 - NGBS user element is built on mature Navigator GPS receiver technology
 - Lessons learned from NGBS will inform beacon service on 4th gen TDRS

Closing Thoughts...

- NGBS:
 - With DAS, enables user-hailed services that are autonomously scheduled by the network
 - Provides spacecraft with radiometrics and data to support autonomous, on-board navigation and operations
 - Provides capabilities fundamental to the Space Mobile Network concept
- A fully operational beacon service will go beyond current implementation of NGBS:
 - Specifically designed service on "4th gen" TDRS could provide increased data rate and also a greater service volume
 - Earth based beacons could offer much higher EIRP for users in HEO or cis-Lunar space

Engagement from the user community is key