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Introduction:  Oxygen fugacity exerts a ma-

jor control on mineral major element chemistry 

and elemental valence of minerals in any plane-

tary compositional system [1].  For Earth, Fe is 

multivalent ranging from nearly Fe0 at low fO2 in 

the deep mantle to Fe2+ to Fe3+ at high low fO2.  

For solar nebular and meteoritic materials fO2 

ranges from near IW to ~10 log fO2 units below 

the IW buffer [1].  Phases in CAIs, for example, 

contain no Fe2+, but may contain Ti4+, Ti3+, or 

Ti2+, and Cr3+ or Cr2+, and V3+ or V2+ [1,2,3].  De-

tailed study of inclusions may reveal important 

differences in fO2 thus reflecting different envi-

ronments in the solar nebula [4]. XANES, FEG-

SEM, and TEM can reveal such variations in mi-

cro and nano samples such as Stardust and cosmic 

dust particles [5], but successful application to re-

duced conditions depends upon the availability of 

well characterized standards.  Acquiring appro-

priate standards for reduced phases that contain 

Ti3+ or Ti2+, Cr3+ or Cr2+, and V3+ or V2+ can be a 

challenge.  Here we report our preliminary results 

at synthesizing reduced Ti bearing standards, and 

focus on the preliminary characterization. 

Procedure: Experiments were conducted at 

constant pressure (1 GPa) and temperature (1400 

°C) using a non-end-loaded piston cylinder appa-

ratus at NASA-JSC [6].  Samples for these exper-

iments comprised ultrapure oxide powders of 

TiO2, MgO, Al2O3, or metallic Ti mechanically 

mixed and ground.  Samples were encapsulated 

in polycrystalline MgO, and pressurized in an as-

sembly with a BaCO3 pressure medium and Type 

C W-Re thermocouple. After pressurization, 

samples were heated to 1400 °C for 6 hours [7], 

and then power quenched.  Three different exper-

iments were performed; two in which the Ti-TiO2 

ratio was varied in order to stabilize Ti metal and 

Ti oxide for a buffer.  A third experiment utilized 

a 1:1 mixture of Ti and TiO2 to intentionally pro-

duce TiO in larger quantities.  All experiments 

were equilibrated with the MgO capsule material 

thus also allowing characterization of Ti in peri-

clase. 

Analysis: The metals and oxides were ana-

lyzed for major element composition using a 

JEOL 8530 FEG electron microprobe at NASA-

JSC.  A 1 μm beam was used at 20kV and 10nA. 

Also, a variety of natural and synthetic standards 

were used, including rutile for Ti and O.  

FIB and TEM work was carried out at the Na-

tional Center for Electron Microscopy and 

XANES spectra were acquired at Advanced Light 

Source Beamlines 10.3.2 (K-edges) and 11.0.2 

(L-edges), all at Lawrence Berkeley National La-

boratory. FIB liftouts were cut using an FEI Dual-

Beam FIB with Ga+ at 30 and 6 keV.   TEM im-

aging and EDS were acquired using an FEI Titan 

TEM.  Atom Location by CHanelling Enhanced 

Microanalysis (ALCHEMI) was done on the Ti-

tan to determine the sites of cations.  An FEI Tec-

nai with Gatan energy filter was used for EELS.  

EELS spectra were shifted to the same onset en-

ergy, and normalized.  Ti L-edge EELS was 

measured on all phases possible, Ti L-edge 

XANES on select phases Ti >1 wt%, and Ti-K 

edge XANES was performed on the coarser 

phases. Oxidation state was determined based on 

the stoichiometry and EELS modeling.  It is 

known that at low fO2, oxygen vacancies occur in 

oxides, not yet accounted for in these preliminary 

results. Our future work will use DFT and multi-

plet simulation of the XANES spectra to produce 

an ab-initio determination of more precise oxida-

tion state measurements. 

Results and Discussion: Figure 1 shows re-

sults from the first experiment, which contained 

mainly MgAl2O4 (with ~1 wt% Ti), a Ti oxide, 

silicide and metal. The silicide, silicate and oxide 

suggest an fO2 between IW-3.5 and IW-8, based 

on equilibria such as TiSi + 3/2 O2 = TiO + SiO2, 

or Ti5Si3 + 11/2 O2 = 5TiO + 3SiO2, and available 

thermodynamic data [8,9]. The Ti oxide is most 

likely TiOx, where x represents a degree of non-

stoichiometry from the end member TiO [10].  

The TiOx can be seen in Fig 1A as the green 

phase, and in 1B as the green spectrum. The 

EELS spectrum can be fit via multiplet theory 



[11] as octahedral Ti4+ with a crystal field split-

ting of 2.4 eV. The magnesiospinel (red in 1A and 

1B) had about 1 wt % of Ti which was octahe-

drally coordinated and has an EELS spectrum dif-

ferent than the TiOx (Fig. 1B).  This result shows 

an experimentally calibrated Ti-L edge spectrum 

for Ti in magnesiospinel at fO2 near the solar neb-

ula.  The two distinct EELS spectra for MgAl2O4 

and TiOx (equilibrated at the same T-fO2 condi-

tions) highlight the importance of considering 

crystallography of the host phase. 

A second experiment produced MgAl2O4 

without Ti, MgTi2O4, TiFe metal, and periclase 

(with Ti).  This suggests a mix of Ti oxidation 

states; we plan additional studies to evaluate the 

utility of MgTi2O4 as a standard or as part of a 

buffer. 

Conclusions: These initial experiments 

demonstrate the great potential for synthesizing 

customized compounds for use as standards, or in  

buffering experiments at reducing conditions.  

We are also investigating Cr and V oxides, as 

well as compounds containing these elements 

such as FeV2O4 and FeCr2O4 [12].                                  
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Fig. 1A) EDS map with Al (red), Ti (green), Si (blue) showing MgAl2O4 (red-Al), TiOx (green-Ti), un-

known phase (dark red equant crystal), FeTi silicide (cyan), and melt (blue-Si).  The white line shows the 

location of FIB section.  B) EELS spectra comparing Ti L-edge EELS from MgAl2O4 spinel and TiOx. 

 

Table 1:  All characterized phases in both synthesis experiments (1400 °C) which contain Ti 
† Coordination and oxidation state are likely variable. Only one location has been characterized as yet. 

Experiment #  / phase Ti-L (EELS) Ti-L (STXM) Ti-K (XANES) Coord. Oxid. state 

1 / MgAl2O4 (Minor Ti) Y Y N Oct Unk. 

1 / TiOx  Y Y Y Oct† 4+† 

1 / Silicide Y N N Unk. Metallic 

2 / MgAl2O4 (No Ti) N N N N/A N/A 

2 / MgTi2O4 Y Y Y Oct 3+ 

2 / Periclase (minor Ti) Y Y Y Unk. Unk. 

 


