

Additional Results of Glaze Icing Scaling in SLD Conditions

Jen-Ching Tsao Ohio Aerospace Institute

Supported by NASA Advanced Air Transport Technology Project

8th AIAA Atmospheric and Space Environments Conference 13-17 June 2016, Washington, D.C.

- Background
 - Progress on scaling method development
- Test Objective
- Test Description
- Ice Shape Comparisons
- Conclusion

- Current recommended method for size scaling
 - In App-C & SLD

- Current recommended method for size scaling
 - In App-C & SLD
 - Match modified inertia parameter K_0 for scale MVD_S

$$K_0 = \frac{1}{8} + \frac{\lambda}{\lambda_{Stokes}} \left(K - \frac{1}{8} \right)$$

- Current recommended method for size scaling
 - In App-C & SLD
 - Match modified inertia parameter K_0 for scale MVD_S
 - Match stagnation-point freezing fraction n₀, with a scale LWC_S at user's choice, to find scale t_{tot.S}

$$n_0 = rac{c_{p,ws}}{\Lambda_f} \left(arphi + rac{ heta_0}{b_0}
ight)$$

- Current recommended method for size scaling
 - In App-C & SLD
 - Match modified inertia parameter for scale MVD_S
 - Match stagnation-point freezing fraction n₀, with a scale LWC_S at user's choice, to find scale t_{tot,S}
 - Match accumulation parameter A_c for scale τ_S

$$A_{c} = \frac{LWC V \tau}{d \rho_{i}}$$

- Current recommended method for size scaling
 - In App-C & SLD
 - Match modified inertia parameter for scale MVD_S
 - Match stagnation-point freezing fraction, with a scale LWC_S at user's choice, to find scale t_{tot,S}
 - Match accumulation parameter for A_c for scale τ_S
 - Match Weber Number $We_L (= \rho_w V^2 d / \sigma_{w/a})$ for scale V_S

$$We_L = c, \Rightarrow V_S = V_R \left(\frac{d_R}{d_S} \right)$$

Potential Method for SLD Glaze Icing

- Feo (2007) proposed a slightly different approach
 - Match film Weber Number for scale V_S

$$We_{f} = \rho_{w} V_{f}^{2} h_{f} / \sigma_{w/a}$$
$$We_{f} = c, \Rightarrow V_{S} = V_{R} \left(\frac{d_{R}}{d_{S}}\right)^{2/3}$$

Match SLD film thickness correlation for scale LWC_S

$$\frac{h_f}{d} = c, \Rightarrow LWC_S = LWC_R \left(\frac{d_R}{d_S}\right)^{-0.7}$$

Typical Scaling Results $V_R=100kt$, $MVD_R=195\mu m$, $n_0=0.3$

Typical Scaling Results $V_R=100kt, MVD_R=195\mu m, n_0=0.5$

Test Objective

- Data for larger model size and size ratio
- Expanded SLD conditions in IRT
- Strong glaze icing regime

Test Description

- NASA Glenn Icing Research Tunnel (IRT)
- 72-in and 21-in-Chord NACA 0012 (size ratio 3.4:1)
- AOA = 0°
- $n_0 = 0.2, 0.3$
- Reference MVD's 85 μm and 170 μm
- Reference Velocities 100 kt and 130 kt

NACA 0012 Test Models in IRT

scale model (21")

reference model (72")

Ice Shape Photographs

(a) reference

(b) scale

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m ³	t min	b ₀ %	A _c	b ₀ A _c	n ₀	<i>We_L</i> 10 ⁶
(a) 12-1-14/3	72	-6.0	99	84	1.2	23.2	82.9	1.61	1.33	0.20	2.30
(b) 1-19-16/6	21	-2.7	184	31	1.0	4.4	83.2	1.62	1.35	0.21	2.33

(a) reference

Date/Run	с in	t _{tot} ⁰C	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n _0	We _L 10 ⁶
(a) 12-1-14/3	72	-6.0	99	84	1.2	23.2	82.9	1.61	1.33	0.20	2.30
(b) 1-19-16/6	21	-2.7	184	31	1.0	4.4	83.2	1.62	1.35	0.21	2.33

Ice Shapes Comparison (1)

x/c

c = 72 in, 12-01-14/03c = 21 in, 01-19-16/06

x/c

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n _o	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_f∕d</i> , 10 ⁻⁹
12-01-14/03	72	-6.0	99	84	1.2	23.2	82.9	1.61	1.33	0.20	2.30	2.68	0.80
01-19-16/06	21	-2.7	184	31	1.0	4.4	83.2	1.62	1.35	0.21	2.33	2.33	1.42
01-19-16/01	21	-0.2	225	28	0.54	6.3	83.2	1.66	1.38	0.20	3.55	2.81	0.83

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n ₀	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_f∕d</i> , 10 ⁻⁹
12-01-14/03	72	-6.0	99	84	1.2	23.2	82.9	1.61	1.33	0.20	2.30	2.68	0.80
01-19-16/06	21	-2.7	184	31	1.0	4.4	83.2	1.62	1.35	0.21	2.33	2.33	1.42
01-19-16/01	21	-0.2	225	28	0.54	6.3	83.2	1.66	1.38	0.20	3.55	2.81	0.83

Ice Shapes Comparison (2)

 V_R =130kt, MVD_R=85µm, n₀=0.2

x/c

c = 72 in, 12-01-14/02 c = 21 in, 01-20-16/01 x/c

c = 72 in, 12-01-14/02 c = 21 in, 01-26-16/01

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b ₀ %	A _c	b ₀ A _c	n _o	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_f/d</i> , 10 ⁻⁹
12-01-14/02	72	-5.3	129	85	0.95	22.1	84.7	1.57	1.33	0.21	3.91	1.52	0.51
01-20-16/01	21	-0.4	239	30	0.60	5.5	84.8	1.59	1.34	0.20	3.93	3.06	0.81
01-26-16/01	21 (1.7	296	28	0.42	6.7	84.9	1.67	1.41	0.20	6.00	1.71	0.55

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n _o	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_ŕ∕d</i> , 10⁻ ⁹
12-01-14/02	72	-5.3	129	85	0.95	22.1	84.7	1.57	1.33	0.21	3.91	1.52	0.51
01-20-16/01	21	-0.4	239	30	0.60	5.5	84.8	1.59	1.34	0.20	3.93	3.06	0.81
01-26-16/01	21	1.7	296	28	0.42	6.7	84.9	1.67	1.41	0.20	6.00	1.71	0.55

Ice Shapes Comparison (3)

c = 72 in, 12-02-14/04c = 21 in, 01-20-16/02

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n _o	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_f∕d</i> , 10 ⁻⁹
12-02-14/04	72	-6.9	99	171	1.35	18.6	92.3	1.45	1.34	0.20	2.30	1.10	0.60
01-20-16/02	21	-1.2	185	59	0.50	7.9	92.2	1.46	1.35	0.21	2.34	1.02	0.72
01-19-16/03	21	-0.8	226	58	0.56	5.7	92.6	1.44	1.33	0.20	3.52	1.08	0.60

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b ₀ %	A _c	b ₀ A _c	n ₀	We _L 10 ⁶	<i>We</i> _f 10 ⁻¹⁶	<i>h_f/d</i> , 10 ⁻⁹
12-02-14/04	72	-6.9	99	171	1.35	18.6	92.3	1.45	1.34	0.20	2.30	1.10	0.60
01-20-16/02	21	-1.2	185	59	0.50	7.9	92.2	1.46	1.35	0.21	2.34	1.02	0.72
01-19-16/03	21	-0.8	226	58	0.56	5.7	92.6	1.44	1.33	0.20	3.52	1.08	0.60

Ice Shapes Comparison (4)

 $\begin{array}{c} \hline \hline c = 72 \text{ in, } 10\text{-}20\text{-}14/02 \\ \hline c = 21 \text{ in, } 01\text{-}16\text{-}15/03 \end{array}$

c = 72 in, 10-20-14/02c = 21 in, 01-27-16/01

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n ₀	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_f/d</i> , 10 ⁻⁹
10-20-14/02	72	-10.8	99	171	1.35	18.6	92.4	1.45	1.34	0.30	2.30	1.10	0.59
01-16-15/03	21	-3.1	185	59	0.50	7.3	92.2	1.35	1.25	0.33	2.35	1.01	0.72
01-27-16/01	21	-2.8	226	58	0.56	5.7	92.6	1.44	1.33	0.30	3.50	1.08	0.60

Date/Run	с in	t _{tot} ºC	V kt	MVD μm	LWC g/m³	t min	b _0 %	A _c	b ₀ A _c	n _o	We _L 10 ⁶	<i>We_f</i> 10 ⁻¹⁶	<i>h_ŕ∕d</i> , 10⁻ ⁹
10-20-14/02	72	-10.8	99	171	1.35	18.6	92.4	1.45	1.34	0.30	2.30	1.10	0.59
01-16-15/03	21	-3.1	185	59	0.50	7.3	92.2	1.35	1.25	0.33	2.35	1.01	0.72
01-27-16/01	21	-2.8	226	58	0.56	5.7	92.6	1.44	1.33	0.30	3.50	1.08	0.60

Conclusion

- Modified Ruff method evaluated
- Feo method evaluated
- For limited testing at $n_0 = 0.2, 0.3$ (strong glaze icing),
 - Better match of reference ice shapes with constant We_L provided $t_{tot} < -2 \ ^{\circ}C$.
 - All still within the ice shape repeatability.
- Size of ice accretion, icing limits well simulated.
- Large feather simulations need improvement

Acknowledgement

- Personal thanks to
 - Mr. Quentin Schwinn for the imaging & scan data process support.
 - IRT cloud cal team and the crew for their excellent support.