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Motivation for Evaluating Combined TBC + Air-Film Cooling

• TBC and air film cooling effectiveness usually studied separately.
• TBC and air film cooling contributions to cooling effectiveness are 

interdependent and are not simply additive.
• Combined cooling effectiveness must be measured to achieve optimum 

balance between TBC thermal protection and air film cooling.
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• Experimental measurements of combined TBC + air film cooling effectiveness are needed to evaluate 
TBC/air-film-cooling tradeoffs (Air film cooling carries significant penalty for engine efficiency).

• Air film cooling greatly reduces effective hconv and 
therefore greatly reduces TBC

• Air film cooling greatly reduces q and therefore TTBC



• Experimentally map effectiveness of air film cooling on TBC-coated 
surfaces.

• Examine changes in cooling effectiveness as a function of:
– Mainstream hot gas temperature
– Blowing ratio (cooling air flow)

• Examine interplay between air film cooling, backside impingement 
cooling, and through-hole convective cooling for TBC-coated substrate.

Objectives



Approach

• Perform measurements in NASA GRC Mach 0.3 burner rig.
– Vary flame temperature and blowing ratio.

• Perform measurements on TBC-coated superalloy plate with scaled up 
simple cooling hole geometry.

– Initial testing of actual vane component did not produce effective air film cooling.

• Perform 2D temperature mapping using Cr-doped GdAlO3 (Cr:GAP) 
phosphor thermometry. 

– GdAlO3 exhibits orthorhombic perovskite crystal structure: gadolinium aluminum perovskite 
(GAP).

– Ultrabright Cr:GAP luminescence emission enables surface temperature mapping using 
luminescence lifetime imaging by simply broadening the excitation laser beam to cover the 
region of interest.

– Unbiased by emissivity changes and reflected radiation. 

– Only applicable to steady state temperatures. 
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Surface temperature maps of stator vane doublet in Mach 0.3 burner rig

Cr:GAP coated vane with 
cooling air supply tubing



Cooling Hole Plate Geometry
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Cooling Effectiveness Measurements
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• Uniform mainstream flow (velocity & 
temperature)

• Typical surface temperatures: < 100°C
• Measure adiabatic air film cooling 

effectiveness, 

•  is a fundamental characterization of 
pure air film cooling effectiveness

• Measure  as a function of blowing 
ratio, M
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• Divergent mainstream flow
• Typical temperatures: 600-1100°C
• Measure overall surface cooling 

effectiveness, '

• ' is a nonfundamental but realistic 
characterization of combined surface 
cooling effects

• Measure ' as a function of M
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• Image stack collection
• Background subtraction
• Data filtering
• Pixel by pixel lifetime analysis
• Produce temperature and cooling effectiveness maps from decay time maps

2D Temperature Mapping by Luminescence Lifetime Imaging
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Luminescence Lifetime Image Stack

n images
t0 = start of 1st exposure
t = frame interval
tn = (n-1)t + t0

= delay time after laser pulse for 
nth image in stack

n = 1

n = 10

Typical values
n = 64
t0 = 0.1 µs
t = 0.25 to 100 µs
Frame interval = exposure = t
Laser pulse frequency = 20 Hz
1 exposure/laser pulse (ICCD)



• Multi-step procedure:
– Step 1: Remove radiation background from each frame collected. 

– Step 2: Assemble stack of background-corrected time-gated images over sequence of incremented 
delay times.

– Step 3: Preform pre-fit filtering.

2D Temperature Maps from Luminescence Lifetime Imaging

Background (no laser)Luminescence before background subtraction Luminescence after background subtraction

=-
10 µs exposure 300 µs 
after laser pulse 1 cm



Pre-Fit Data Filtering
Criteria for removing pixels unsuitable for temperature determination

Minimum absolute threshold
Iij(frame 1) < 2200

Maximum final frame relative 
threshold

Iij(last frame) > 10%*Iij(first frame)

Minimum number of frames in fitting interval
10%*Iij(first frame) < Iij(frame n) < 90%*Iij(first frame)

Number of frames < 6

Insufficient signal Too cold: need to extend 
to longer delay times after 

laser pulse

Too hot: need smaller 
increments of delay time

°C

Post-fit 
temperature map

1 cm

Example of better delay time range & increments



– Step 4: Fit luminescence decay curve at each pixel to produce decay time map. Dyanamic
fitting window spans region between 60% and 10% of initial intensity. (Matlab routine).

– Step 5: Use calibration data to convert decay time map to temperature map (Matlab routine).
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excludes outlier pixels

°C

°C

Effect of Luminous Flame Bursts

Tenth Image in Stack
Decay time temperature maps 95% confidence interval

includes outlier pixels

Tincluded - Texcluded

°C

°C

Burning particles crossing field of view produce temperature map artifacts, 
can be mitigated by outlier removal.

Luminous flame 
streaks produce local 
temperature errors 
~20°C too low.

Burning particle
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Air Film Cooling of TBC-Coated Surface
Results

• Examine changes in cooling effectiveness as a function of:
– Mainstream hot gas temperatures: 1390, 1604, and 1722°C
– Blowing ratio: M' = 0 to 1.1
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Burner Rig 2D Cooling Effectiveness Maps
Tmainstream = 1390°C
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Combined Cooling Effects Summary
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• Air film cooling
– Effectiveness initially increases with increasing M, then diminishes with jet lift-off.
– Vortex-induced hot streaks appear near cooling holes. May be worse on TBC-coated surface. 

• Through-hole convective cooling
– Effectiveness increases rapidly at high M.
– Not observed in conventional air film cooling measurements.

• Backside impingement cooling
– Slowly increases with increasing M.

• Cooling effectiveness shows similar dependence on blowing ratio over wide range of 
mainstream gas temperature.

• Effect of TBC on other cooling mechanisms
– Will decrease air film cooling effectiveness.
– Will increase through hole convective cooling effectiveness – may be useful for showerhead cooling.

1 cm



Mainstream Gas Flow
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• Successfully demonstrated 2D temperature mapping by Cr:GAP
phosphor thermometry with high resolution (temperature, spatial, but 
not temporal) in presence of strong background radiation associated 
with combustor burner flame.

• Can be used as new tool for studying/optimizing non-additive interplay 
of cooling mechanisms for TBC-coated components.

– TBC
– Air film
– Through-hole convection
– Backside impingement

Conclusions
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