

Plans & Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA PSL

June 15, 2016

Peter Struk

NASA Glenn Research Center

Jen-Ching Tsao, Tadas Bartkus

Ohio Aerospace Institute

Outline

- Introduction & background
- NASA Fundamental Ice Crystal Icing Research Goals
 - Concepts using PSL
- Experimental Description Preliminary 2-day test May 2015
- Results
 - Review one case in detail
 - Look at general trends from sweeping
 - Total Water Content
 - Humidity
 - Spray Bar Water Temperature
- Conclusions

Introduction

- NASA investigating the fundamental physics of ice crystal icing (ICI)
 - $\quad \mathsf{AEST} \to \mathsf{AATT}$

Atmospheric Environments Safety Technologies Project (AEST; 2009–2014)

- Challenging to study ice-accretion physics directly inside the engine
 - Trying to simulating that environment without using engine
- Evaluating whether the NASA Propulsion Systems Lab (PSL), in addition to full-engine and motordriven-rig tests, can be used for more fundamental ice-accretion studies
 - Paper presents concept & some preliminary experimental test results
 - Subsequent paper present complementary modelling work

Advance Air Transport Technology Project (AATT; 2015 +) Advanced Aircraft Icing (AAI) Subproject

Technical Challenge:

Expand engine aero-thermodynamic modeling capability to predictively assess the onset of icing in current and N+2/N+3 aircraft during flight operation (FY21).

The simulation tools are well anchored in results from both fundamental physics studies and full engine tests.

NASA Fundamental ICI Goals

- 1. Identify and bound the conditions affecting icecrystal ice accretion at the (local) accretion site
- 2. Generate & characterize (i.e. measure) those conditions including uniformity
- 3. Gather data and develop models on ice-crystal icing factors
- 4. Scaling: develop & test scaling relations for icecrystal icing

Local region requires more information than full-scale test (e.g. melt ratio)

Concept Using PSL

Goal: Ability to generate a prescribed mixed-phase condition at the test section for fundamental ice-crystal icing research

Preliminary Testing

- 2 days of testing occurred in May 2015
- Objectives
 - Preparation for more extensive test scheduled for 2016
 - Examine spray bar and plenum parameters and how they affect the mixedphase at the exit of the free jet
 - Cloud characterization:
 - Melt ratio using SEA multiwire
 - Temperature & humidity measurements at test section (cloud on vs. cloud off) using custom probe
 - Observe ice accretion

PSL Configuration

PSL Configuration (cont.)

Temperature and Humidity Measurement

Side View

- Reward facing probe
 - Temperature
 - Resistance Temperature Device (RTD) placed inside probe inlet to prevent water / ice contamination
 - Small suction induced in probe
 - Calibrated to read total temperature given Mach
 - Humidity
 - Flow extracted via same probe inlet
 - Using Spectra Sensor Model WVSS-II
 - Tunable Diode Laser Absorption Spectroscopy (TDLAS)
 - Cameras imaged probe to observe any ice accretion

Mixed-Phase Investigation

Parameters

- Plenum / test section
 - Total pressure, P_{0,i} (kPa)
 - Static pressure, P_{s,e} (kPa)
 - Velocity, v_e (m/s)
 - Total temperature, T_{0,i} (°C)
 - Humidity, ω_i (g / kg dry)
- Spray bar
 - TWC
 - $P_{air} \& P_{water} \rightarrow \dot{m}_{noz}$
 - Nozzle #
 - Particle Size
 - MVDi (IRT calibrated values)
 - Water / air temperatures, T_{water}

Sample Test Data

- Plenum / Test Section (targets)
 - $P_{0,i} = 87.3 \text{ kPa}$
 - P_{s,e} = 83.6 kPa (1.6 km)
 - $v_e = 85 \text{ m/s}$
 - $T_{0,i} = 1.8^{\circ}C$
 - $\omega_i = 0.5 \text{ g/kg dry (RH_{PL} = 10\%)}$
- Spray bar
 - $TWC_{bulk} = 1.4 \text{ g/m}^3$
 - MVDi = 40 μm
- Reported data
 - Temperature measurement lag likely due to thermal inertia of inlet
 - 30 second averages
 - Cloud off (0.52 g/kg, 1.2 °C)
 - Cloud on (1.37 g/kg, -0.9 °C)
 - $\Delta \mathsf{T}_{0,e} = \mathsf{T}_{0,e,on} \mathsf{T}_{0,e,off}$

Wet-bulb temperature

Multiwire Results

- TWCbulk = 0.78 g/m³
 - MVDi = 40 μm

- Multiwire data
 - 30 second averages
 - $\text{TWC}_{\text{m}} = 1.50 \text{ g/m}^3$
 - LWC_{m,2.1} = 1.06 g/m³
 - LWC_{m,0.5} = 0.83 g/m³
 - Melt ratio, η_e

$$\eta_e = \frac{\max(LWCm)}{TWC_m} = \frac{1.06}{1.50} = 0.70^*$$

* more detailed analysis anticipated to be applied later

Ice Accretion Examples

8X

actual

speed

Case 677 ($\eta_e = 0.70$)

Case 663 ($\eta_e = 0.20$)

Parameter Sweeps

- Paper presents parameter sweeps for the following variables:
 - TWC_{bulk} (0.5 5 g/m³)
 - Plenum RH (10 50%)
 - Spray bar temperature (7°C, 43°C, and 82°C)
- Within each sweep, additional variations on:
 - MVDi
 - Wet-bulb temperature

TWC Sweep 3 Facility Target Condition P_0_i (kPa) 87.3 P_{s,e} (kPa) 83.6 v_e (m/s) 85 Altitude (km) 1.6 T_{0,i} (°C) 4.2 T_{s,e,off} (°C) 0.6 RH_{0,i} (%) 10 ω_i (g/kg) 0.6 Twb_{s,e,off} (°C) -3 Twb_{s,e,off} (°C) -3 Twb_{s,e,off} (°C) -6 Twater,i (°C) 7 TWC bulk (g/m ³) 0.78 1.4 2.3 5.0 MVDi (µm) 40 40 Measurements Test # 670 671 672 673 TWC_m (g/m ³) 1.4 2.9 4.3 10.0 η_e (-) 0.69 0.66 0.23 0.27 $\Delta \omega_e(g/kg)$ 0.55 0.87 1.3 2.3 $\Delta T_{0,e}$ (°C) -1.7 -2.3 -2.9 -3.7 Twb_{0,e,on} (°C) -3 -4	Table 2. Facility target conditions and select measurements during two TW					
Facility Target Condition $P_{0,i}$ (kPa) 87.3 $P_{s,e}$ (kPa) 83.6 v_e (m/s) 85 Altitude (km) 1.6 $T_{0,i}$ (°C) 4.2 $T_{s,e,off}$ (°C) 0.6 RH _{0,i} (%) 10 ω_i (g/kg) 0.6 Twb _{0,e,off} (°C) -3 Twb _{s,e,off} (°C) -6 Twother (g/m ³) 0.78 1.4 2.3 5.0 MVDi (µm) 40 Measurements Test # 670 671 672 673 TWC _m (g/m ³) 1.4 2.9 4.3 10.0 η_e (-) 0.69 0.66 0.23 0.27 $\Delta \omega_e$ (g/kg) 0.55 0.87 1.3 2.3 $\Delta T_{0,e}$ (°C) -1.7 -2.3 -2.9 -3.7 Twb _{0,e,on} (°C) -3 -4 -3 -2 Twb _{s,e,on} (°C) -3 -4 -3 -2 Twb _{s,e,on} (°C) -6 <t< td=""><td>Test Series -></td><td colspan="4">TWC Sweep 3</td></t<>	Test Series ->	TWC Sweep 3				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Facility Target Condition					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Po,i (kPa)	87.3				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	P _{s,e} (kPa)	83.6				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	v _e (m/s)	85				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Altitude (km)	1.6				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	T0,i (°C)	4.2				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T _{s,e,off} (°C)	0.6				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RH _{0,i} (%)	10				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\omega_i (g/kg)$	0.6				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Twb _{0,e,off} (°C)	-3				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Twb _{s,e,off} (°C)	-6				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T _{water,i} (°C)	7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TWC _{bulk} (g/m ³)	0.78	1.4	2.3	5.0	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MVD _i (µm)	40				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Measurements				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Test #	670	671	672	673	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TWC_m (g/m^3)$	1.4	2.9	4.3	10.0	
$\begin{array}{ c c c c c c c c } & \Delta \omega_{e}(g/kg) & 0.55 & 0.87 & 1.3 & 2.3 \\ \hline \Delta T_{0,e}(^{\circ}C) & -1.7 & -2.3 & -2.9 & -3.7 \\ \hline Twb_{0,e,on}(^{\circ}C) & -3 & -4 & -3 & -2 \\ \hline Twb_{s,e,on}(^{\circ}C) & -6 & -6 & -5 & -4 \\ \hline & & & \\ \hline \end{array} \end{array}$	η e (-)	0.69	0.66	0.23	0.27	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	∆ω _e (g/kg)	0.55	0.87	1.3	2.3	
Twb _{0,e,on} (°C) -3 -4 -3 -2 Twb _{s,e,on} (°C) -6 -6 -5 -4 Ice Accr. (Y/N)	$\Delta T_{0,e}$ (°C)	-1.7	-2.3	-2.9	-3.7	
Twb _{s,e,on} (°C)-6-6-5-4Ice Accr. (Y/N) YYYY	Twb _{0,e,on} (°C)	-3	-4	-3	-2	
Ice Acer. (Y/N) Y Y Y Y	Twb _{s,e,on} (°C)	-6	-6	-5	-4	
Ice Accr. (Y/N) Y Y Y Y						
	Ice Accr. (Y/N)	Y	Y	Y	Y	

Conclusions

- NASA conducting research on fundamentals of ICI with following goals:
 - Identify and bound the conditions at the (local) accretion site
 - Generate & characterize conditions
 - Develop models & gather data on ice-crystal icing factors
 - Scaling: develop & test scaling relations for ice-crystal icing
- Generate environment outside of an engine to facilitate study
 - Evaluating PSL as potential test bed
- Presented data from an initial 2-day test effort in May 2015
 - Parameter sweeps on TWC, Plenum RH, and T_{water}
 - More limited variation on initial particle size and Twb
 - Saw both expected trends; harder-to-explain trends; new insights
 - Measurement uncertainties, cloud uniformity, and additional data required
 - Preparatory work for 2016 testing
- 2-week test campaign occurred in March 2016
 - Data analysis beginning

Acknowledgement

- Financial support:
 - NASA's, Advanced Air Vehicle's program
 - Advance Air Transport Technology Project (AATT)
 - Advanced Aircraft Icing (AAI) Mr. Tony Nerone, Project Manager
- Special thanks to:
 - Staff of the NASA PSL
 - Kyle Zimmerle, Michael Oliver, and Judy Van Zante who provided information presented in this paper.
 - Mr. Chris Lynch for his excellent imaging work.