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Introduction:  The geology and geomorphology of 

Mars provide clear evidence for the presence of liquid 

water on its surface during the Noachian and Hesperi-

en eras (i.e., >3 Ga) [1]. In contrast to the ancient wa-

tery environment, today the surface of Mars is relative-

ly dry. The current desert-like surface conditions, 

however, do not necessarily indicate a lack of surface 

or near-surface water/ice. In fact, massive deposits of 

ground ice and/or icy sediments have been proposed 

based on subsurface radar sounder observations [2]. 

Hence, accurate knowledge of both the evolution of 

the distribution of water and of the global water inven-

tory is crucial to our understanding of the evolution of 

the climate and near-surface environments and the 

potential habitability of Mars. 

This study presents insights from hydrogen iso-

topes for the interactive evolution of Martian water 

reservoirs. In particular, based on our new measure-

ment of the D/H ratio of 4 Ga-old Noachian water, we 

constrain the atmospheric loss and possible exchange 

of surface and subsurface water through time. 

D/H Ratio of 4 Ga-old Noachian Water:  We 

first reported coordinated in situ analyses of carbon, 

oxygen, and hydrogen isotopic compositions of ~4 Ga-

old carbonates in Allan Hills (ALH) 84001 [3]. The 

analyses were conducted using the Cameca NanoSIMS 

50L at Carnegie Institution of Washington. The carbon, 

oxygen, and hydrogen isotopes were positively corre-

lated with each other from the isotopically lighter core 

(δ13CPDB = ~10‰, δ18OSMOW = ~3‰, δDSMOW = 

~800‰) to the heavier rim (δ13CPDB = ~25‰, 

δ18OSMOW = ~20‰, δDSMOW = ~1,200‰). This isotopic 

enrichment was consistent with a widely-accepted 

formation scenario [e.g., 4] that the ALH 84001 car-

bonates formed in a Noachian aqueous system that was 

short-lived and involved small amounts of fluid. A 

Rayleigh distillation modal based on our new hydro-

gen isotope data indicates that the original Noachian 

water should have had a δD range of ~500-1,000‰ 

(Fig. 1a).  

Distribution of Water Reservoirs:  The isotopic 

signatures of three hydrogen reservoirs are now identi-

fied based on our analyses of Martian meteorites [this 

study, 3, 5, 6], telescopic observations [e.g., 7], and 

Curiosity measurements [e.g., 8]: primordial water, 

surface water, and subsurface water (Fig. 1a). The 

primordial water is retained in the mantle and has a 

D/H ratio similar to those seen in Martian building 

blocks. The surface water has been isotopically ex-

changed with the atmospheric water of which D/H 

ratio has increased through the planet’s history to 

reach the present-day mean value of ~5,000‰. The 

subsurface water reservoir has intermediate δD values 

(~1,000‒2,000‰), which are distinct from the low-δD 

primordial and the high-δD surface water reservoirs. 

We proposed that the intermediate-δD reservoir repre-

sents either hydrated crust and/or ground ice interbed-

ded within sediments [5]. The hydrated crustal materi-

als and/or ground ice could have acquired its interme-

diate-δD composition from the ancient surface water 

reservoir recorded by 4-Ga ALH carbonates.  

Water Inventory at 4 Ga:  Our one-reservoir 

model [9] provides the volume of water loss since 4 

Ga using the D/H ratios of the Noachian (500-1,000‰ 

at 4 Ga) and the present-day (5,000‰) waters. The 

calculations are performed in two extreme cases for 

atmospheric escape regimes. Case-1 assumes a Jeans 

escape-limited regime and employs a minimum net 

fractionation factor (f) of 0.016; this f value is inter-

preted as representing the current Martian condition 

[10]. Case-2 assumes a diffusion-limited regime of 

hydrogen from the homopause to the exobase and em-

ploys a maximum net f of 0.33; this regime approxi-

mates ancient Martian conditions with higher solar UV 

flux than that of today [11]. Although actual atmos-

pheric escape processes have not been fully con-

strained yet, these two cases provide a probable range 

of realistic f values during the last 4 billion years. 

Hence, Case-1 and Case-2 yield the water inventory 

lower- and upper-bounds at 4 Ga (81-270 m global 

equivalent layer GEL), assuming that polar layered 

deposits (PLD) dominate the present-day surface water 

inventory (20-30 mGEL [9]) (Fig. 1b).  

Interactive Evolution of Surface/Subsurface 

Water:  The calculated range of water inventory at 4 

Ga (81-270 mGEL) is comparable to the water volume 

estimated from putative Hesperian shorelines (130-156 

mGEL [12]), but is distinctly lower than the water vol-

ume estimated from putative Noachian shorelines (548 

m GEL [13]) (Fig. 1b). At face value, these observa-

tions imply that all of the Hesperian surface water was 

lost to space via atmospheric escape. However, in de-

tail all reasonable escape processes fail to account for 

the difference in the water volumes between the Noa-

chian surface water and the present-day surface water 

inventory. Assuming that there was such a large body 



of surface water in the Noachian, we propose that a 

part of the Noachian surface water (≥200 mGEL) has 

been sequestered underground over geologic time and 

is a source of the intermediate-δD reservoir.   

The geomorphology of Mars suggests that in the 

Hesperian the surface water might not have existed as 

long-standing oceans, but occurred episodically as 

floods and/or ephemeral lakes that once filled in the 

northern lowlands [1]. The Hesperian surface water 

might have been sourced from the subsurface, inter-

mediate-δD reservoir. This hypothesis is further sup-

ported by a recent Curiosity measurement that a Hes-

perian-age mudstone has an intermediate-δD value 

(2,000±200‰ [8]).   
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Figure 1: Interactive evolution of (a) hydrogen isotopic compositions of Martian water reservoirs and (b) the sur-

face/subsurface water inventory of Mars. Thick green bars show the volume of paleo-oceans; note that the length of 

green bar does not indicate the longevity of paleo-ocean but the period of Noachian or Hesperian. Two bars brack-

eted with open triangles indicate ranges of water volume calculated in Case-1 and Case-2. The data sources of hy-

drogen isotopic compositions and the size of paleo-oceans are [14] and [9], respectively.  


