

Agenda

- Human performance envelope?
- Past research:
 - Research motivation & overview
 - Initial findings
- Present activities: Confirmation and extension
 - What happens when controllers are working with automation? Overview
- Future directions
- Conclusions
- Applications

Human performance envelope

Motivation

- ATM is an 'ultra-safe' industry
- ATM remains highly 'human-centric' real-time operations
- Mitigations defend against incidents, but still occur
- Need to know when controllers are approaching the edges of acceptable performance

Research overview

- Overall Aims
 - Identify factors
 - Identify and verify interactions that threaten performance
 - Develop markers of performance limits or boundaries
- Potential Outcomes
 - Better understanding of 'difficult' human performance factors in Air Traffic Control (ATC)
 - Signs and symptoms that performance is threatened

Study approach

Method: ATC exercise

• Design

IV: Taskload (low/high)

Covariates: Arousal, Fatigue, SA, Stress, Workload **DV:** (Performance): STCA, route directs, time to respond

Measures

Covariate	Arousal	Fatigue	SA	Stress	WL
Measure	Stress-Arousal Check List	Visual Analogue	Situation Present Assessment Method	SACL	Instantaneous Self Assessment
Interval (Mins)	20	20	4	20	4

• Participants

□ 29 male students aged between 18-30

□ All received a 4 hour training session

□ Score of \geq 80% on a simulation-related competency test

Results: Factors occur together

Results: Co-occurring factors-a cumulative effect?

 Factors may combine in a cumulative way and associate with poorer performance

Results (2) Time on task: Less resilient performance

Behavioural markers of performance limits

- Apparent link between some behaviours and self reported measures
 - Example: Indicators associated with fatigue
 - Yawning
 - Looking away from screen
 - Posture changes
- Interviews
 - 22 ATCOs took part (17 males, 5 female)
 - What markers have you used that informed you about your performance?

• Controllers use internal and external markers

" If someone's getting stressed they can get louder or sit closer to the screen or something so if you see these things then you pay more attention yourself."

• Controllers use internal and external markers

• Markers are similar between controllers

• Controllers use internal and external markers

• Markers are similar between controllers

• Developed from experience

"You start to know that you've been burning your fingers before on this kind of situation and you really have to pay attention"

- Controllers use internal and external markers
- Markers are similar between controllers
- Developed from experience
- Markers are used to support performance

"I'd say 300%, if you know that you're not being top performing today then that's fine, just adapt your working style. But if you don't know it, it might end in tears"

Key findings (2) Markers are used to support performance

Conclusions at the end of this research...

- Multiple factor relationships:
 - Multiple factors co-occur to influence controller performance
 - Interactions between factors may create a cumulative influence on performance
 - But limitations of study challenge generalisability of results
- Behavioural markers:
 - Markers indicate limits of performance
 - Controllers use markers to support performance

Research overview

- Overall Aims
 - Identify the effect of automation in the ATC task on:
 - Workload
 - SA
 - Performance
 - Identify and verify interactions that threaten performance
- Potential Outcomes
 - Better understanding of 'difficult' human performance factors in Air Traffic Control (ATC)
 - Signs and symptoms that performance is threatened

Method: Simulation

- Human in the loop, en-route high fidelity simulation (Part task)
 - Single high-altitude sector in Cleveland ARTCC (79)
 - Mix of level flight and transitioning aircraft
 - No winds
 - All aircraft CPDLC equipped
 - All aircraft FMS and ADS-B equipped

Method: Design (1)

- Within subjects design
- Conducted as part of a larger study
- 4 task sets, Decreasing levels of automation:
 - Task set 1: Conflict detection only (CD)
 - Task set 2: Conflict detection and routine tasks (CD+RT)
 - Task set 3: Conflict detection, coordination and pilot requests – decision making (CD+DM)
 - Task set 4: Conflict detection, routine tasks, coordination's and pilot requests (CD+RT+DM)
- Conflict probe running, but hidden

Method: Design (2)

• Measures:

Variable	Workload	SA	Performance
Measure	ISA	SPAM	Time to correctly detect conflicts
Interval (Mins)	3	3	Continuous

• Participants

- 8 retired controllers from ZOA staffing the test sector
- Age range 50-69
- Experience in en-route ATC ranged from 23 29.5 years (M=24.94 SD=2.54)

Results

- Workload significantly different between conditions
 - Task 1 lowest workload
 - Tasks 2 and 4* highest
- SA response times significantly different between conditions
 - Times slowest task 1 and task 3
 - Fastest task 2* and task 4
- Time to detect conflicts significantly different between conditions
 - Slowest in task 1, fastest in task 2

Results (1): Automation significantly affects controller workload

San José State

Results (2) Automation significantly affects controller situation awareness

Results (3) Automation significantly affects controller performance

NASA San José State

Results (3) Automation significantly affects controller performance

NASA San José State

Results – Factor interactions: Task set 1

Results(2) – Factor interactions: Task set 2

Conclusions

- Factors that influence controller performance (e.g. workload, fatigue) co-vary and appear to interact to create cumulative effect on performance
- Results appear to be confirmed in a second experiment with a small, but expert, sample
- Factor influences on performance may change with control context – e.g. automation

Future directions

- HF Expert workshop
 - AHFE 2016
 - Concept development and (face) validation
- Collaboration between Future Sky and NASA Ames
 - Parallel development of human performance envelope model for pilots and controllers
 - Collaboration of Europe and US research
- Controlled simulations with expert participants
 - Part task and high-fidelity
- Factor scaling
- Further specification of edges of performance envelope
 - Markers
 - Psychophysiological measures?

Implications

- Findings support a shift towards research investigating multi-factor co-occurrences and performance associations
- Training in markers
 - Predictive measures of human performance and prevention of performance decline
- Multifactor relationships Performance prediction
 - Mitigation in the control room
 - Prevention of multifactor combinations
- Design of controller workstation/flight deck
- Adaptive automation implications

Thank you!

Back up slides

Back up slides

- How well can controllers detect conflicts?
 - …when it's their only responsibility?
 - Could the addition of a secondary task impact their performance?
 - Routine tasks, such as hand-offs, check-ins, and frequency changes
 - Decision-making tasks, such as responding to flight crew requests or coordination requests from other controllers
 - 4x2x2 within-subjects experiment design
 - Primary independent variables:
 - Task set
 - Traffic density
 - Run length

• 4x2x2 matrix

TASK SET	TRAFFIC DENSITY		SCENARIO LENGTH	
conflict detection	1x	1.2x	20m	60m
conflict detection + routine tasks	1x	1.2x	20m	60m
conflict detection + requests and coordinations	1x	1.2x	20m	60m
conflict detection + routine tasks + requests and coordinations	1x	1.2x	20m	60m

- Simulation backdrop:
 - Single high-altitude sector in Cleveland ARTCC
 - Mix of level flight and transitioning aircraft
 - Constant winds at altitude
 with forecast error
 - Conflict probe running, but hidden

- Dependent measures:
 - Controller detections are compared to the conflict probe data, producing:
 - Correctly identified conflicts
 - False alerts
 - Missed alerts
 - Real-time subjective workload ratings
 - Safety (separation violations)
 - Feedback from questionnaires and debrief

- Participants:
 - 8 retired controllers from ZOA staffing the test sector
 - 4 retired controllers from ZOA staffing the confederate airspace
 - 12 aviation students / general aviation pilots staffing the pseudo pilot positions

Results (3): Markers are used to indicate edges of performance

Key results

- Factors correlated as expected
- Factor interactions associated with a significantly larger performance decline compared to single factors
- Significant relationships between observed participant behaviours and self-report measures

ATC Exercise: Overview

- Aims:
 - Investigate multifactor relationships and association performance
 - □ Identify markers of performance edge
- Experiment: designed to reflect ATC working session
 116 minute task (20 minute break after 60 minutes)
 Task used real sectors, routes and traffic flow data
 - Taskload varied every 20 minutes between low and high through number of aircraft and complexity
- Measures: arousal, fatigue, SA, stress, workload
- Participant behaviours observed and recorded

<u>Behavioural markers of performance</u> limits

- Apparent link between some behaviours and self reported measures
 - Example: Indicators associated with fatigue
 - Yawning
 - Looking away from screen
 - Posture changes
- Interviews
 - 22 ATCOs took part (17 males, 5 female)
 - What markers have you used that informed you about your performance?

• Controllers use internal and external markers

" If someone's getting stressed they can get louder or sit closer to the screen or something so if you see these things then you pay more attention yourself."

• Controllers use internal and external markers

• Markers are similar between controllers

• Controllers use internal and external markers

• Markers are similar between controllers

• Developed from experience

"You start to know that you've been burning your fingers before on this kind of situation and you really have to pay attention"

- Controllers use internal and external markers
- Markers are similar between controllers
- Developed from experience
- Markers are used to support performance

"I'd say 300%, if you know that you're not being top performing today then that's fine, just adapt your working style. But if you don't know it, it might end in tears"

Markers of workload

Different markers for high workload and low workload:

High WO Category	Kload: Internal Marker	
	Don't know the next steps	
Cognitive	Increased focus	
changes	Calls are a surprise	
	Reduced self-awareness	
Subjective feeling	Losing control	
	More traffic than can	
	handle	
	Panic and uncertainty	
	Not comfortable	

Category	External Marker	
Perception changes	Can't talk to executive/	
	executive doesn't hear you	
Visible cues	Fidgety	
	Move closer to screen	
	Colleagues not talking	
Verbal cues	Swearing	
	Blaming others	
Performance changes	Miss actions	
	Mixing call signs	

Markers of workload

• Low workload:

Category	Internal Marker	Proposed category	External Marker
	Pay less attention	Perception changes	Incorrect assessment of a
Cognitive changes	Easily distracted		situation
Cognitive changes		Visible cues	Sit back in chair
	Reduced self-awareness		Away from radar screen
	Leave situations develop		Talking to colleague
Changes to control	Trying to create more	Performance changes	Overlooking aircraft
	complex situations		Forgetting aircraft
	Less safety buffer		Repeated 'sloppy' mistakes
	Boredom		Fall behind traffic due to
Subjective reening	Relaxed		distraction

Markers of fatigue

Markers internal to the controller

Observable markers

Cognitive changes	Subjective	Visible cues	Demeanour
		Yawning	Less active
Concentration issues	More effort to control	Laid back	Not as confident
Increased	Don't want to work	Eyes closed	Quieter
assumptions	busy traffic	Falling asleep	Distracted
Slower	Force self to pay	Style of control	Doufourneenee
	attention	Style of control	Performance
	-	Less flexible	Overlook aircraft
Nild confusion	Feel tired	Reduction in	Multiple, small
Reduced awareness	Not looking forward	efficiency	mistakes
	to shift	Less safety huffer	'Running behind
		Less safety build	traffic'
		Incorrect plan	Slow to solve
			problems
		Slower communications	Forget aircraft

Markers of stress

- Differentiation between positive stress and negative stress
- *"It's almost excited because there is more traffic coming. It's a different situation if someone is already in a complex situation, you realise he is falling behind*

Category	Internal Marker	Category	External Marker
Cognitive changes	Start to think slower		Fidgeting
Physiological	Heartbeat	Visible cues	Red cheeks/neck
changes	Sweat		Flustered
	Not coping	Changes to voice	Speaks faster, louder
	Feeling uncomfortable		Speaks higher
Subjective feeling	Anxious (negative)	Demeanour	Easily frustrated
	Nervous		Angry/confrontational
	Tense		Blame others

Markers of vigilance

Category	Internal Marker	
	Not as 'sharp'	
	Surprised	
Cognitive/	Assume more	
perception changes	Focused, 'tunnel vision'	
	Donut effect	
	Not aware	
	Scan differently	
Changes to control	Not leaving a problem	

Category	External Marker	
Performance changes	Overlook aircraft	
	Don't hear/see	

Markers of losing the picture

- Differentiation between markers that indicate losing the picture, and having lost the picture:
- "It starts off by just falling behind a bit. So you might just be a few steps behind what you're supposed to be doing and if that builds up too much then you will get to the point where you start to lose the picture"

Category	Internal Marker	Category	External Marker
	Difficulty selecting	Visible cues	Slow at task
	priorities	Performance changes	Running behind
Cognitive changes	Thinking whilst giving		Time working ahead degrades
	Tunnel vision/hearing		Missing calls
	Under confident		
Subjective feeling	Under confident		

Markers of having lost the picture

Category	Internal Marker		Category	External Marker
	Lose awareness		Visible cues	Zig zagging head movement of where to look
Cognitive changes	Everything a surprise			'Blacked out'/ silent
	No plan		Verbal cues	Asking for confirmation
	Cannot see a solution		Performance changes	Unsafe clearance
				Unexpected decisions
Changes to control	Reactive control			Jumping from one aircraft to
Subjective feeling	Panic			another
5				Don't know who's calling
				Don't react correctly

Inadequate communications

 Inadequate communications were described in relation to causes and contributory factors such as fatigue, lack of attention, or stress:

"Mixing call signs happens more if someone's tired or under pressure"

"If you have aircraft that aren't listening and you're busy...maybe the extra thing that sends you over"

Category	External Marker
Situational issues	Inadequate communications
	with aircraft
	Equipment failures
Performance changes	Mixing call signs
	Slip of the tongue

Conclusions

- Multiple factor relationships:
 - Multiple factors co-occur to influence controller performance
 - Interactions between factors may create a cumulative influence on performance

- Behavioural markers:
 - Markers indicate limits of performance
 - Controllers use markers to support performance