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ABSTRACT

For shape predictions of structures under large geometrically nonlinear deformations, Curved
Displacement Transfer Functions were formulated based on a curved displacement, traced by a material
point from the undeformed position to deformed position. The embedded beam (depth-wise cross section
of a structure along a surface strain-sensing line) was discretized into multiple small domains, with
domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be
described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled
piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement
Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By
entering the surface strain data into the Displacement Transfer Functions, deflections along each
embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes.
Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to
generate linear and nonlinear surface strains and the associated deflections to be used for validation. The
shape prediction accuracies were then determined by comparing the theoretical deflections with the finite-
element-generated deflections. The results show that the newly developed Curved Displacement Transfer
Functions are very accurate for shape predictions of structures under large geometrically nonlinear
deformations.

NOMENCLATURE

c depth factor (vertical distance from neutral axis to bottom surface of uniform embedded
beam), in

c(s) = c(x), depth factor, vertical distance from neutral axis to bottom surface of in-
extensional (S = X) nonuniform embedded beam, in

C; = c(x;), depth factor at x = x;, in

C; = h, —c, , depth factor at x = x; for upper surface, in

c; = c(x;), depth factor at x = x,, in

Cy value of ¢, at embedded beam root x=x, =0, in

c, value of ¢, at embedded beam tip x=x, =1, in

d math symbol—differential

E Young’s modulus, Ib/in?

h, embedded beam depth at x = x;, in

h, value of /, at embedded beam root x=x,=0,in

h, value of /, at embedded beam tip x=x, =1, in

| length of embedded beam, in

n index for the last span-wise strain-sensing station (or number of domains)

P applied load, Ib

R(s) radius of curvature, in

s curved axial coordinate along elastic curve of deformed embedded beam, in

X,y Cartesian coordinates (x in beam axial direction y in lateral direction), in

s; deformed curved axial coordinate of strain-sensing station at s,(= x,), in

t tubular beam wall thickness, in

u, magnitude of displacement along x-axis of deformed material point at s, , in

X; X coordinate of the i-th strain-sensing station



; straight deflection at axial location x = x;, in

) value of y, calculated from Nastran linear analysis, in

y(x) curved deflection (curved distance traced by a material point from its initial un-
deformed position to its final deformed position), in

Y = y(x;) = y(s,), curved deflection at axial location x=x;, in

O value of y, calculated from Nastran nonlinear analysis, in

v, beam-tip (i =n) vertical deflection, in

v, beam-tip (i =n) curved deflection, in

Al =(x,—x, ,)=(s,—s,,)=1/n, domain length (strain-sensing stations separation distance),
in

&(s) surface strain at curved axial location s, in/in

£(x) surface strain at x-location, in

g lower surface strain at i-th strain-sensing station, in/in

g upper surface strain at i-th strain-sensing station, in/in

£, axial strain in S-direction, in/in

0(s) beam slope angle in reference to S-system, rad or deg

0(x) beam slope in reference to X-system, rad or deg

0, =0(s;) [=0(x,)], slope angle at i-th strain-sensing station, rad or deg

0, =0(s,) [=0(x,)], slope angle at 0-th (beam root) strain-sensing station, rad or deg

0, =0(s,) [=0(x,)], slope angle at n-th (beam tip) strain-sensing station, rad or deg

slope angle of a straight line connecting origin and deformed material point s, on

elastic curve of deformed embedded beam, rad or deg
Poisson’s ratio

shifted axial coordinate, in

=X—X.

i-17

e <

INTRODUCTION

After the Helios prototype with a wing span 247 ft (fig. 1) broke-up in mid-air at an altitude of
2,800 ft under very large wing dihedral deformation with a wing tip deflection reaching 40 ft (fig. 2),
there was a need to develop a new technology for monitoring the deformations of highly flexible aircraft
for feedback control and flight safety. A new technology has been developed that can convert distributed
surface strain data into structure deformed shapes.

Strain sensors can only measure surface strains and not the structure deformed shape. However, after
the development of the Ko Displacement Theory (refs. 1-8), a new innovative structure shape prediction
technology, called Method for Real-Time Structure Shape-Sensing (U.S. Patent Number 7,520,176)
(ref. 3), was created. This new technology uses the Displacement Transfer Functions to transform
rectilinearly distributed surface strains into out-of-plane deflections for mapping overall structure
deformed shapes for visual displays. For applications, the surface strains can be obtained from
conventional strain gauges, wireless strain sensors, or fiber optic strain sensors. However, for this
technical publication, surface strains were analytically calculated from finite-element analysis to
demonstrate and validate the proposed structural deformation prediction methodology.

By entering the surface strain data into the Displacement Transfer Functions, one can calculate slopes
and deflections along each strain-sensing line on a given structure such as a wing. By using multiple
strain-sensing lines, overall deformed shapes of a structure subjected to bending and torsion loadings can
then be obtained. A total of seven sets of Displacement Transfer Functions were formulated in the past for



different structural geometries (refs. 1-9), and were found to be quite accurate in the shape predictions of
actual flight vehicles (refs. 10 and 11).

By embodying the Displacement Transfer Functions, the rectilinearly distributed surface strains can
also be input into the Stiffness and Load Transfer Functions to calculate structural stiffness (bending and
torsion) and operational loads (bending moments, shear loads, and torques) for monitoring the operational
loads of a flight-vehicle (ref. 12) in near real-time. The accuracy of this method for estimating operational
loads on structures was analytically confirmed by using finite-element analysis of different aerospace
structures such as tapered cantilever tubular beams, depth tapered un-swept wing boxes, depth tapered
swept wing boxes, and the doubly-tapered Ikhana aircraft wing (ref. 13).

All the earlier Displacement Transfer Functions (refs. 1-9) were formulated based on the Shifted
straight deflections perpendicular to the undeformed neutral axis. For the shape predictions of structures
under large geometric nonlinear deformations, there was a need to reformulate a new set of Displacement
Transfer Functions for structure shape predictions.

This technical publication is based on the actual curved displacement (curved distance traced by a
material point from its undeformed position to its deformed position) and formulate the Curved
Displacement Transfer Functions for shape predictions of structures under large geometric nonlinear
deformations.

A long tapered cantilever tubular beam was chosen to assess the accuracy of the new Curved
Displacement Transfer Functions. Linear and nonlinear finite-element analyses were performed on the
tapered cantilever tubular beam to 1) analytically generate linear and nonlinear surface strains for use in
the Curved Displacement Transfer Functions and 2) analytically generate beam deflections (benchmarks)
for comparisons with theoretically predicted beam deflections. The Curved Displacement Transfer
Functions were then programmed using the finite-element-generated surface strains as input data to
calculate theoretical deflections. The shape prediction accuracies were then determined by comparing the
theoretical deflections with the finite-element-generated deflections (benchmarks). The results show that
the Curved Displacement Transfer Functions, just like the Shifted Displacement Transfer Functions (refs
1-9) are very accurate for shape predictions of structures under both linear and large geometric nonlinear
deformations (beam-tip deflection reaching 58 percent of span).

REVIEW OF TECHNICAL BACKGROUND

To formulate the displacement theory (refs. 1-8), strain-sensing stations (strain measurement points)
are to be discretely distributed along a strain-sensing line on the surface of the structure (for example,
aircraft wing) (fig. 3). The depth-wise cross section of the structure along the strain-sensing line is called
an imaginary “embedded beam” (not to be confused with the classical isolated Euler-Bernoulli beam).
Each embedded beam was then discretized into multiple domains (strain-sensing station separation
distances) with domain junctures matching the locations of the strain-sensing stations. By discretization,
the variation of the embedded beam depth factor can be described with a piecewise linear function, and
the surface strain variation can be described with either a piecewise linear or a piecewise nonlinear
function. This approach enables the integration of the curvature equation of the deformed embedded beam
to yield slope and deflection equations in recursive forms. The recursive slope and deflection equations
are then combined into a single deflection equation in dual summation form. A set of three equations
(recursive slope equation, recursive deflection equation, and dual-summation deflection equation) are
called Displacement Transfer Functions, which are expressed in terms of the embedded beam geometrical
parameters and surface strains, and contain no material properties. By entering surface strain data into the
Displacement Transfer Functions, one can calculate slopes and deflections along the embedded beam. By
using multiple strain-sensing lines, deflections at multiple strain-sensing stations can then be calculated
for plotting the overall deformed shapes of the structure subjected to bending and torsion loads. The
Displacement Transfer Functions are purely geometric in nature, and therefore, for a given density of
strain-sensing stations, one can accurately compute the associated deflections, whether the input surface
strains come from linear or nonlinear deformations.



BASIC EQUATIONS FOR THE DISPLACEMENT THEORY

The following first section is to geometrically establish the basic curvature-strain equation, from
which different Displacement Transfer Functions can be formulated. The second section discusses
different curvature-strain differential equations.

Curvature-Strain Relationship

Figure 4 shows the deformed state of an embedded beam with a changing depth factor, c¢(s), where S

is the curved coordinate along the elastic curve of the deformed embedded beam. The curvature-strain
relationship can be established graphically from figure 4. The embedded beam elastic curve has a local
radius of curvature, R(s), within a small beam segment subtended by d6 . The undeformed curve length,

AB, lies on the beam neutral axis, and the deformed curve length, A’B” {= AB [1+&(s)]} , where £(s) is

the surface strain, lies on the beam lower surface. From the two similar slender sectors, O’AB and
O’A’B’ , one obtains the geometrical relationship described with equation (1):

O'A L+ c(s) A'B
O’A R(s) AB

=1+&(s) 1)

From equation (1), one obtains the curvature-strain equation (2):

1 e

R(s) c(s) )

Equation (2) geometrically relates the local curvature, 1/R(s), to the associated surface strain, £(s),
and the depth factor, c(s), of the embedded beam. Equation (2) is the basis for formulating Displacement
Transfer Functions.

Traditional Curvature Equations for Vertical Deflections

Different forms of curvature-strain differential equations written in the x-ysystem have the

following familiar forms as shown in equations (3) through (5) (for detailed discussions, see refs. 14 and
15). The mathematical differences between those equations are discussed.

1. Eularian Curvature Equation

1 dyld* e(x)
R(x)  [1+(dy/dx)* T c(x)

@)

It is important to mention that equation (3) is referenced to the deformed (movable) x-coordinate (that is,
x - coordinate gives only the deformed location of a material point, but not the undeformed location).



2. Lagrangian Curvature Equation

1 d*y/dx* _ &)
R J1-(dy/dx) (%)

(4)

Equation (4) is in reference to the undeformed (fixed) x-coordinate (derivation in Appendix A, ref. 15).
Because of the nonlinear term, (dy/dx)z, direct integrations of equations (3) and (4) can end up in

extremely complex deflection equations, which have poor prediction accuracies at large deformations
(details in ref. 15).

3. Shifted Curvature Equation

If the deformed material points are shifted back to their respective undeformed x-positions [that is, by
setting axial displacement u to zero (u — 0)] (fig. 5), the shifting condition (# — 0) will cause the

nonlinear term, (dy/dx)z, to become zero (Appendix A, ref. 15). Hence equation (4) becomes equation

(5):

&yt .
dx*  c(x)

Equation (5) is in reference to the undeformed x-coordinate, is called the shifted curvature-strain
differential equation, and is not the traditional linearized form of the Eulerian curvature equation (3)
which is in reference to the deformed x-coordinate.

Equation (5) is the basic curvature-strain differential equation used in the formulations of the Shifted
Displacement Transfer Functions (ref. 15). Detailed discussions of equation (5) are provided in the
subsequent Similarity of Shifted and Curved Formulations section.

FORMULATION OF THE SHIFTED DISPLACEMENT TRANSFER
FUNCTIONS

The Shifted Displacement Transfer Functions were formulated earlier (refs. 1 and 4) by piecewise
integrations of equation (5) for nonuniform embedded beams. The resulting equations are listed below as
equations (6a), (6b), and (6c¢) and equations (7a), (7b), and (7c). As shown, equations (6a), (6b), and (6c)
and equations (7a), (7b), and (7c) can degenerate into the limit cases of uniform embedded beams
(c,, =c,=c). The limit cases were obtained by first expanding the logarithmic function, log,(c,/c, ),
in the neighborhood of (¢;/c, ) =1, and then setting, ¢, , =, =c. Equations (6a), (6b), and (6c) and
equations (7a), (7b), and (7c) listed below were used in the linear shape prediction analysis portion of the
present technical publication.

Shifted Displacement Transfer Functions

The following Shifted Displacement Transfer Functions shown as equations (6a), (6b), and (6c) were
formulated by using the piecewise-linear representation of the variation of the depth factor, c¢(x), and

using the piecewise-linear representation of the variation of the surface strain, €(x). The detailed
mathematical derivations can be found in refs. 1 and 4.



Slope equation:

tan6, = Al[g"“ —& B T8 g G|y ang
Ci—¢G (ci—¢ ) i1 (6a)
Uniform A
P —(g,,+¢&)+tanb,
i-1=6= 2C

(i=1,2,3,....,n)
Vertical deflection equation:

a. Inrecursive form:

.= (ALY —& BT EC ¢ logei+ (¢,,—¢)||+y._, +Altan6,
( ) (ci—l - c') Ci

Uniform ( )
(¢ =¢;=c) 6

(6b)

(2¢,,+¢&)+y,_ +Altanf,_,
(i=12,3,....n)

b. In summation form [equations (6a) and (6b) combined]:

—(Al)z _ECmECH] e —c)
2(,]—c> (c—cp’ | Ogecj_l A

Contributions from deflection terms

) 2{@_}){ €, £ TEC, llogecc_f}}+yo+(i)Altan00 (60)
€j i1 "0 for cantiiever beams.

J=1 —¢;  (ep—c)

=0 for cantilever beams

Contributions from slope terms

Uni (Al)2 i 2 i—1
niform
e Y. (e, +e) + —Z(z — ), +€,) +y,+ (Al tan,
Fi= 6c 5 2¢ 22
=0 for cantilever beams
Contributions from deflection terms Contributions from slope terms

(i=12,3,...,n)

Equations (6a), (6b), and (6c) are called the Shifted Displacement Transfer Functions for nonuniform
embedded beams (¢, , #¢;), including the limit cases of uniform embedded beams (c,,=c;=c)
(refs. 1 and 4).

Improved Shifted Displacement Transfer Functions

The following Improved Displacement Transfer Functions shown as equations (7a), (7b), and (7c)
were formulated for nonuniform embedded beams by using piecewise-linear representation of the
variation of the depth factor, c¢(x), and using piecewise-nonlinear (quadratic) representation of the
variation of the surface strain, £(x) (ref. 7).



Slope equation:

Al c
tand. = — | (2¢, — cE ,—2c &)+tcc & |log ——
i 2 Ci_Ci_l)S [( i z ])( i~i-1 i—1 z) ii—1 1+1] ge Ci_l
Al
R Te—— [(5¢, =3¢, )e, —2(c;,— ¢, )€ + (¢, +¢, ey, |[+tanb,_,  (7a)
i i—1
niform Al
o e (5¢,_,+8¢,—¢,,)+tanf,_

(i=1,2,3,....,n)
Vertical Deflection Equations:

a. Inrecursive form:

—ﬂ[(h‘ —c._)(ce ¢, E)tec ] ¢ lo i—(c —c.,)
Vi 2(c,— CH)4 i T CGaNGE L, — Cii€in || €108, c i —Cia
(Al)2 7b
_ m[(gc" —5¢, )€ —2(5¢, = 2¢, €, +(2¢, + ¢, )€, |+ v, + Altan6_,  (7H)
Uniform ( l) 7 6 Al 0
Cormemo > a0 (7¢,,+6¢€,—€,)+y, ,+Altan@,_,

(i=12,3,....,n)

b. In summation form [equations (7a) and (7b) combined]:

c.
i m[@cj—cj_,)(cjej_l—ZCj_lej)+chj 181+1] cjlogecf"—(cj—cj_l)
y=@ny Y

=

1
_m[(sc 50,08, =2(5¢; = 2¢; )E, +(2¢,+¢, e, |

Contribution from deflection terms

1 ¢
L ﬁ[(ZCj—ijl)(cjé‘jfl € )+Cj 1€ ,+1:|10ge—
AT (cj - cjfl) Ciy
+(AL? Y (= ) X -
=1
J _m[(scj — SCj—l)gj—l - 2(3Cj —Ci, )8j + (Cj + Cj—1)8j+1]

Contributions from slope terms
+y, +i(Al)tan@,
%{—/

=0 for cantilever beams

2 i—1
Uniform (Al) .
(¢i=¢;=c) 2(78J 1 +68 J+l)+ 12 z( _j)(sgj 1 +88 j+l)+y0 +(1)Al tane()
=0 for cantilever beams
Contributions from deflection terms Contributions from slope terms

(i=12,3,....,n)



Equations (7a), (7b), and (7c) are called the Improved Shifted Displacement Transfer Functions for
nonuniform embedded beams (c,_, #c¢;), including the limit cases of uniform embedded beams

(¢, ,=c¢;=c) (ref. 7).

FORMULATION OF CURVED DISPLACEMENT TRANSFER
FUNCTIONS

The following sections present mathematical processes needed for the formulation of the new Curved
Displacement Transfer Functions. The formulation is based on curved deflections instead of traditional
vertical deflections.

Curved Curvature Equations

For large bending deformations of beams (fig. 5), one must understand that the actual (true)
deflection, y, of a material point is a curved distance traced by the same material point from its initial

undeformed position to its final deformed position. Thus, the conventional deflection, y, is merely the
vertical component of the curved deflection, y . Also see discussions about large deformations in refs. 16

and 17.
The basic curvature equation referenced to the curvilinear s -y system, instead of traditional

Cartesian x -y system, can be expressed as equation (8):

I do(s)y _d(dy\_dy . _dy
(dsj » 00 ds ®

R(s) ds ds T ds?
Equating equations (2) and (8) gives the curvature-strain differential equation (9) in the s-y system
for large deformations:

dy_el

ds® c(s) ©

Equation (9) is a purely geometrical relationship, containing no material properties. Assuming the
length of neutral axis of the embedded beam remains the same (that is, s = x ) after bending, equation (9)
can be rewritten in reference to the undeformed X-system as equation (10):

&5 _e

W B c(x) (10)

The mathematical process for formulating the Curved Displacement Transfer Function is through the
piecewise integration of equation (10) and is described as follows.

Piecewise Representations

To enable piecewise integrations of equation (10), the depth factor, c¢(x), and the surface strain,
£(x), can be expressed by either piecewise linear or piecewise nonlinear functions, described as follows
(fig. 3) (refs. 1-8).



1. Depth factors

The variations of the embedded beam depth factor, c(x), within each small domain, x, , <x<x;,
(i=1,2,3,...,n), can be expressed with the linear function given by equation (11):

c(x)=c;_+(c; —c;_y) ; (x,,<x<x) (11)

-1 =

)

A

2. Surface Strains

The variation of the surface bending strain, €(x), within each small domain, x,_, <x<x,, can be

expressed by either a linear function given by equation (12) (ref. 4) or by a nonlinear function given by
equations (13a) and (13b) (ref. 7):

a. Linear:
X—X
ex)=¢_ +(&-¢€.) AlH ;o (x, <x<x,) (12)
b. Nonlinear:
3¢, ,—4e +¢€,, £ ,—2¢€ +E,, 2
ex)=¢g, , —— LM (x—x )+—— 1" (x—x : x, , <x<ux
( ) i—1 2Al ( 1—1) 2(Al)2 ( l-]) ( i—1 ,) (l3a)
€,,=€,,—3€, +3¢, X (at i=n) (13b)

Equation (13a) was generated by standard quadratic interpolation of strain values, {¢, ,€;,€,.,,},
respectively at three equally spaced strain-sensing stations, {x, ,,x,,x,,}, and equation (13b) is the
quadratic extrapolation equation to obtain extrapolated strain, €., , beyond the embedded beam tip (p. 33,
ref. 7).

i+l

Piecewise Integrations

In view of equations (11), (13a), and (13b); the curvature-strain differential equation (10) can be
piecewise integrated to yield the Curved Displacement Transfer Functions. The piecewise integration of
equation (10) within the domain, x, ; <x <x;, between the two adjacent strain-sensing stations, {x, ,,x,}
, yields the slope-angle equation (14):

2,\ — —
J' d_);dxzd_y_(d_yj =J' g(x)dx ;o (x, <x<Xx)
X dx dx dx i1 Xict c(x) (14)
—— — s —
Eq. (5) 0(x) 0., Eq. (5)

which can be rewritten in the form of equation (15):



e(x)

0 —dx+6, ;o (., Sx=x)
(x)= J. L) Jil, 1 (15)
Slope
Slope increment atx;
Integration of the slope angle equation (14) yields the curved deflection equation (16):
s dy (dy _ _ £(x)
| ——(—] k=y(0)— y, f 0y dx —I f —dd
o éﬁ dx i1 De@gon T 1C .X (16)
0(x) jr—“ at x;_, Deﬂectlon atx nght hand side
= dueto ;. of equation (12)
(X, <x<x)
In view of equation (15), equation (16) can be rewritten in the form of equation (17):
e(x)
y(x)= J J dxdx +(x—x,_,)0._,+ yl 1 —j 9(x)dx+yl 1
Xy Y X; 1C x %,_/
Deflection at x Deﬂecuon (17)

Deflection increment above y;_; dueto 6, atx;_

(X, <x<x)

Using piecewise representations of {c(x),&(x)} given by equations (11), (13a), and (13b); equations
(15) and (17) can be integrated within the domain, x, , <x<x,, to yield the slope and deflection

equations in closed recursive and summation forms. A set of three equations (recursive slope equation,
recursive deflection equation, and summation deflection equation) are called the Curved Displacement
Transfer Functions. The mathematical processes are similar to those used in the piecewise integrations of

the shifted curvature-strain gitferential equation (5) to formulate the Shifted Displacement Transfer
Functions (refs. 1, 4, and 7). The detailed mathematical derivations of the Curved Displacement Transfer

Functions are presented in Appendices A—H.

CURVED DISPLACEMENT TRANSFER FUNCTIONS

After piecewise integrations of equations (15) and (17), and going through a mathematical process
similar to the one used in formulating the Shifted Displacement Transfer Functions (refs. 1, 4, and 7), one
can obtain the Curved Displacement Transfer Functions shown as equations (18a), (18b), (18c), (19a),
(19b), and (19c) for nonuniform embedded beams, including the limit cases of uniform embedded beams,

(c.,=c¢;=c).

Curved Displacement Transfer Functions

The Curved Displacement Transfer Functions shown in equations (18a), (18b), and (18c) were
formulated by carrying out piecewise integrations of equations (13) and (15) using the piecewise-linear
representation of the depth factor c(x) [eq. (11)] variation, and using the piecewise-linear representation

of the surface strain €(x) [eq. (12)] variation. The detailed mathematical derivations are presented in
Appendices A, B, C, and D.
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Slope-angle equation (Appendices A and C):

0i=Al 8i—l_gi_i_gz IC Illlg +0i—1
cu—¢ (¢ ) Ci—l
niform A (18a)
(:i]:(-,q-> 2_0 (gi—l T, )+ 0i—1
(i=12,3,...,n)
Curved deflection equation:
a. In recursive form (Appendices A and C):
= (Aly St Bt S [ log, - +(c,, —q)} + 3,1 +(ADO,,
2( —-c;) (Ci—1 - Ci) i1
18b)
. Al (
(ﬁ‘,’fc’i) ( ) (e, ,+&)+,,+(ADO,
(i=12,3,...,n)
b. In summation form [equations (18a) and (18b) combined] (Appendices B and D):
i E._C.—EcC,; C,
y, = (Al) Z Tt AT c¢;log,—~+(c,,—c,)
o 2( Ci—¢; ) (cj_l—cj) iy ' '
Contributions from deflection terms
—€ £,,C; &L, C,
+(Al)22{(z - ])|: Ly /= Jog, — }}+ ¥, +()(ADB,
J=1 j_l cj (cj_l B cj) Cj_l =0 for cantilever beams (180)

Contribution from slope terms

o, (205 e, e +22 2<z—f><e, 8+ 3o +HDAD,
¢ A ¢

((’I—l_(‘l_c)

=0 for cantilever beams

Contributions from deflection terms Contributions from slope terms

(i=12,3,...n)

Equations (18a), (18b), and (18c) are called the Curved Displacement Transfer Functions for nonuniform
embedded beams (c;#c¢,,) (Appendices A and B) under large deformation with geometrical

nonlinearity including the limit cases of uniform embedded beams (¢, , = ¢, =¢) (Appendices C and D).

Improved Curved Displacement Transfer Functions

The Improved Curved Improved Displacement Transfer Functions shown in equations (19a), (19b),
and (19c) were formulated by carrying out piecewise integrations of equations (13) and (15) using a
piecewise-linear representation of the depth factor c¢(x) [eq. (9)] variation, and using a piecewise-
nonlinear representation of the surface strain &(x) [egs. (11a) and (11b)] variation. The detail
mathematical derivations are presented in Appendices E, F, G, and H.
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Slope-angle equation (Appendices E and G):

Al C
0. =—|Q2c¢,—c,_)cE_ —2c,_ &)+ cc, €, |log, —
i 2(Cl- _ Ci_l )3 [( i i—1 )( i~i-1 i—1 l) i7i-1 z+l] ge Ci_l
—Al 5 3 2(3 0
- 4e—c ) [( ¢; =3¢ )€ —20¢; — ¢ )& + (¢t ¢ g, ] t0 (19a)
niform Al
(il;:c) E (581'—1 + 881‘ — € )+ 91‘—1

(i=1,2,3,....,n)
Curved-deflection equations:

a. Inrecursive form (Appendices E and G):

_ (ALY .
Y= 4 [(2ci = )CE L = 2€,E) + ¢¢ &y ] ¢;log, ———(¢;—¢c.y)
2(¢;—¢iy) -
(A)? -
-7 [8c, —5¢, )&, —2(5¢,—2¢, )&, +(2¢; + ¢, )€ |+ Y, +AIB,,  (19b)
niform Al ? ~
) (Te +66,- )+ 5., + (AR,
o 24c

(i=12,3,....,n)

b. In summation form [equations (19a) and (19b) combined]: (Appendices F and H):

1 N
i ﬁ[(ch —CCiE =20, 4E)F 0,0 E J c¢;log,—~—(c;—c, )
v 2 (c;=¢i) ¢,
=AY 1
=
_m[(ficj —5¢,,)€,,—2(5¢; = 2¢;)€; +(2¢;+¢;,)E |

Contributions from deflection terms

1 c,
i—1 73[(26'] - Cj_l )(ngj_l - 2cj—18j)+ Cjcj—lgjﬂ :Iloge _J
2 l . . 2(Cj — Cj—l) Cj_l
+(AD Y= )
j=1
J —m[(Scj —3c¢; )€, —23c;—c; g, +(c; +cj_1)gj+1]

Contributions from slope terms
+ 3y + ()(ADB, (19c)
%/—/

=0 for cantilever beams

Uniform (Al)2 d (Al)z = . . ~ .
= > oag 2(7.9]._1 +6€,—€,)+ e Z (i—Jj)5¢;,+8¢;—¢€,,)+ y, +()(A1B,
=l =l =0 for cantilever beams
Contributions from deflection terms Contributions from slope terms

(i=12,3,...,n)
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Equations (19a), (19b), and (19c) are called the Improved Curved Displacement Transfer Functions
for nonuniform embedded beams (c, #c¢, ;) (Appendices E and F), under large deformations with

geometrical nonlinearity including the limit cases of uniform embedded beams (c,_, =c,=c)

(Appendices G and H). Equations (18a), (18b), (18c), (19a), (19b), and (19c) listed above were used in
the nonlinear shape prediction analysis portion of the present technical publication.
It is important to mention that if {y,,0,} in equations (18a), (18b), (18c), (19a), (19b), and (19c) are

replaced respectively with {y.,tan®,}, then the Curved Displacement Transfer Functions shown in

equations (18a), (18b), (18c), (19a), (19b), and (19c) will become the Shifted Displacement Transfer
Functions shown in equations (16a), (16b), (16¢), (17a), (17b), and (17c). As will be seen shortly, the
vertical (straight) and curved deflections, {y,,y,} , calculated respectively from the Shifted and Curved

Displacement Transfer Functions turned out to be identical.

CHARACTERISTICS OF DISPLACEMENT TRANSFER FUNCTIONS

In the Shifted and Curved Displacement Transfer Functions, the vertical and curved deflections,
{y;,y;} , at the strain-sensing station, x,, are expressed in terms of the inboard depth factors
(¢y.,€15C55--,¢;) and the associated inboard surface strains (g, ,€,,¢,,...,&;) [for egs. (6a), (6b) (6.0); eqgs.
(18a), (18b) (18c)] or (&,,&,,E,,....€,,,) [for egs. (7a), (7b), (7c); egs. (19a), (19b), (19¢)], including the
values of {c,,€,} at the strain-sensing station, x,, where deflections, {y,,y,}, are calculated.

It is important to mention that equations (6a), (6b), (6¢), (7a), (7b), (7c), (18a), (18b), (18c), (19a),
(19b), and (19c) are purely geometrical relationships, containing no material properties. However, it must
be understood that the surface strains, &, implicitly contain the effect of material properties and internal

structural configurations. Thus, in using equations (6a), (6b), (6¢), (7a), (7b), (7c), (18a), (18b), (18c),
(19a), (19b), and (19c) for shape predictions of complex structures such as aircraft wings, there is no need
to know the material properties, nor the complex geometries of the internal structures.

STRUCTURE USED FOR SHAPE PREDICTION ANALYSES

The structure chosen for shape prediction analysis is a long tapered cantilever tubular beam with
dimensions and material properties listed in table 1.

Table 1. Dimensions and material properties of a tapered cantilever tubular beam.

Beam root dimensions Beam tip dimensions Material properties
(for Nastran analysis)
l,in t, in hy, in ¢y, in h,,in c,,in E, Ib/in? v
300 0.02296 8 4 2 1 10.5 x 10° 0.3

Figure 3 shows a span-wise vertical cross-section (embedded beam) of the tapered cantilever tubular
beam with strain-sensing lines located on both lower and upper surfaces. The embedded beam is
discretized into n = 20 equal domains with domain length of Al =//n= (300 in.)/20 =15 in. Thus, there
are n +1=21 equally spaced strain-sensing stations along each strain-sensing line. Different lateral loads P
={50, 100, 200, 300, 400, 500, 600}Ib were applied at the beam tip to study the effect of geometric
nonlinearity on the shape predictions under increasing loads (deformations). For the tubular beam, the
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local depth factors, ¢, (i=1,2,3,...,n), are the local outer radius of the tubular beam, and are known. As
will be shown in the finite-element analyses, for the linear cases, the depth factors, c,, remain unchanged

because, the magnitudes of the pairs of lower and upper surface strains are identical regardless of the load
level. Therefore, only the lower surface strains are needed for inputs to the Displacement Transfer
Functions for shape calculations.

However, for large geometric nonlinear deformations (for example, the Helios flying wing shown in
figure 1), the lower and the upper strain-sensing lines are needed because the magnitudes between the
lower and upper surface strains will be slightly different due to the axial strain components induced by the
curved-beam effect at large bending. Thus, both lower and upper surface strains are needed to calculate
the deformation-dependent depth factors, c¢,, which together with associated lower surface strains, &;,

can then be input to the Displacement Transfer Functions for shape calculations.

FINITE-ELEMENT ANALYSES

The MSC/Nastran (MSC Software Corporation, Newport Beach, California) finite-element program
(ref. 18) was used for both linear and nonlinear analyses of the tapered cantilever tubular beam subjected
to different beam-tip loads. In this technical publication, the surface strains needed for input to the
Displacement Transfer Functions for shape predictions were Nastran-generated and not experimentally
measured. Also, the Nastran-generated deflections were used as reference benchmarks to study the shape
prediction accuracies of the Displacement Transfer Functions.

Figures 6a and 6b show two types of finite-element models generated for the tapered cantilever
tubular beam using shell elements (fig. 6a) and using beam elements (fig. 6b). When modeling the tubular
beam with the shell elements, the nonlinear analysis could be carried out only up to certain low level
nonlinear deformations, beyond which the nonlinear analysis would break down. Namely, the shell
element stiffness would become ill conditioned (that is, mathematical singularity) due to a very large ratio
between bending and membrane stiffness in a large displacement situation. When the beam elements were
used, the nonlinear analysis could be carried out up to very large deformations without encountering the
above-mentioned mathematical singularity.

Nastran Linear Analysis

The Nastran linear analysis (using a linear strain tensor) assumes a linear relationship between the
load applied to a structure and the response of the structure. In using linear theory for large deformation
analysis, the deflection of the structure is simply proportional to the apply load.

In the linear analysis, the Nastran displacement outputs provide vertical deflections, y, but zero axial

x-displacements (u=0) (fig. 6a). The zero axial displacement implies the horizontal (x-direction)

shifting of the vertical deflections to their respective undeformed x -positions. Therefore, the vertical
deflections generated by the Nastran linear analysis can be compared with the vertical deflections
calculated from the Shifted Displacement Transfer Functions using the Nastran-generated linear surface
strains.

Nastran Nonlinear Analysis

In the geometric nonlinear large deflection problem (strain tensors contain second order terms) the
stiffness of the structure depends on the displacement, and thus the deflection response is no longer a
linear function of the load applied (refs. 18 and 19). For nonlinear analysis, both x- and y-

displacements, {u,y}, are nonzero along the neutral axis (fig. 6b and fig.5). In the large deformations,

the load is no longer vertical; it has followed the structure to its deformed state (fig. 6b). In the Nastran
nonlinear analysis, the Follower Force Option command was used to force the applied load to be normal
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to the deformed neutral axis without introducing an axial load component (fig.6b). For comparisons with
the curved deflections, y, predicted from the Curved Displacement Transfer functions, the Nastran-

displacement data of {u,y} were used to generate the equivalent curved deflections, y, by using the
deflection-conversion equations described in the following section.

STRAIGHT-TO-CURVED DEFLECTION CONVERSION

As previously mentioned, the Nastran linear analysis provided only vertical displacements, y, but
zero axial displacements, (z=0), along the neutral axis (fig. 6a). However, in the Nastran nonlinear
analysis, the Nastran outputs gave both vertical displacements, y, and axial displacements, u(#0),
along the neutral axis (fig. 6b). To compare with the curved deflections, y, calculated from the Curved
Displacement Transfer functions, the Nastran nonlinear displacement data of {u,y} were used to
generate Nastran versions of curved deflections, y .

Figure 7 shows the elastic curve of the deformed embedded beam. In figure 7,
é{: tan"[y,./(xl. —u,)]}, is the slope angle of a slanted straight line connecting the origin and deformed
point, s,, on the embedded beam elastic curve, and u, is the magnitude of the axial displacement of
deformed material point, s;, along the undeformed x -axis. In figure 7, if the curved deflection, y, is

considered as a circular arc, then é,- will be an angle subtended by the arc length, y, which can then be
related to the vertical deflection, y,, through the following deflection-conversion equation (20) (fig. 7).

V. = .é.: |t -l L
y; = x,0, x,[an (%‘%H (20)

6,

Equation (20) was used to convert Nastran displacement data of {u,,y,} into Nastran versions of curved
deflections, y,, for comparison with theoretically predicted curved deflections, y,, from the Curved
Displacement Transfer functions.

CURVED-BEAM EFFECT IN NONLINEAR DEFORMATIONS

In the Nastran linear finite-element analysis of the tapered cantilever tubular beam, the Nastran strain
outputs showed that the magnitudes of the lower and upper bending strains at the same cross section are
always identical regardless of loading levels. The equal magnitudes of the lower and upper bending
strains implies that the neutral axis is always located at the half depth of the embedded beam, and no axial
strains are induced under linear bending.

However, in the Nastran nonlinear analysis, the Nastran strain outputs show that the magnitudes of
the lower and upper surface strains at the same cross section are not exactly the same under large bending.
The magnitudes of the lower surface strains are slightly larger than the magnitudes of the associated upper
surface strains especially in the outboard flexible region. The magnitude difference of the lower and upper
surface strains could be attributed to a slight shifting of the neutral axis toward the bent concave side of
the embedded beam due to curved-beam effect.

Before using the Displacement Transfer Functions, the correct depth factor and surface strains must
be used. The following two methods: 1) Neutral-axis shifting method or 2) Axial-strain elimination
method can be used to calculate the correct depth factor or correct surface bending strains for use in the
Displacement Transfer Functions.
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Neutral-Axis-Shifting Method
As shown in figure 8, if the difference between the lower and upper surface strains magnitudes is due
to neutral axis shifting, then one can use pairs of the lower and upper strains, {€;,€,;} , to calculate the
unknown lower depth factors, ¢, (or upper depth factor ¢,)(i=1,2,3,....,n), from the depth-factor
equation (21):

C. = l_ h , E :h_c , (l:1’273"-’n) (21)

in which h, (i=1,2,3,...,n) is the depth of the embedded beam at x = x,. For the current linearly tapered
embedded beam (fig. 3), the depth, A, , can be calculated from the following depth equation (22):

hl.:ho—%(ho—hn) ;(i=1,2,3,.m) (22)

in which {h,,h, }are respectively the depths of the embedded beam at the embedded beam root
(x=x,=0) and at the embedded beam tip (x=x, =1).

When the shifted lower depth factor, ¢; (eq. 21), is used, the associated lower surface strain, €, must

also be used for input to the Displacement Transfer Functions. As will be seen shortly, the neutral axis
shifting method can automatically nullify the axial strain effect.

Axial-Strain Elimination Method

If the known depth factor ¢, = A, /2 of the embedded beam (fig. 3) is to be used, one can consider the

unequal magnitudes of the lower and upper surface strains contain both bending and axial strain
components. In view of figure 9, by averaging the magnitudes of the lower and upper surface strains
(¢,>0,¢ <0), axial strain components can be eliminated to yield the true bending strains given by

equation (23) (fig. 9):

. . E—E
True bending strain = T ; (i=1,2,3,....,n) (23)

For entering the true bending strains, (g, —&,)/2, into the Displacement Transfer Functions, the known
depth factor, ¢,(= A, /2), must be used.

Strain-to-Depth Factor Ratios

For exploration purpose, the strain-to-depth factor ratios for the above two methods [egs. (21) and
(23)] can be written in the following forms as equations (24) and (25):

For neutral-axis-shifting case [rewriting eq. (21)]:

= (24)

16



For axial-strain elimination case [from eg. (23)]:

L(Si—a)_g(&—gfj_gi—a 25
o\ 2 n\ "2 A (25)

1 1 i

Note from equations (24) and (25) that the strain-to-depth factor ratios for the two methods are
identical. Since all the Displacement Transfer Functions from equations (6a), (6b), (6¢), (7a), (7b), (7¢c),
(18a), (18b), (18c), (19a), (19b), and (19c) are expressed in terms of strain-to-depth factor ratios, the
slopes and deflections calculated using the two input methods turned out to be extremely close as will be
seen in the Numerical Results section.

PREDICTION ERROR EQUATIONS

The Nastran-generated deflections were used as benchmark data to study the theoretical deflection
prediction errors. Let {y,,y,}, respectively denote the vertical and curved deflections predicted,

respectively from the Shifted and the Curved Displacement Transfer Functions, and let {(y,)y, »(3;)yv -

respectively denote the corresponding Nastran-calculated linear and nonlinear deflections. Then, the
prediction error is defined by the following prediction error equations (26) and (27), respectively for
vertical and curved deflection cases:

Vertical deflection case (linear analysis):

Prediction error = {L— 1} x100% (26)
e
Curved deflection case (nonlinear analysis):
Prediction error = [Ay—— 1} x100% (27)
Yi)nn

Equations (26) and (27) were used to determine the prediction errors of the Shifted and Curved
Displacement Transfer Functions.

NUMERICAL RESULTS

The complete set of strain and deflection data generated by Nastran linear and nonlinear analyses of
the tapered cantilever tubular beam are tabulated in Appendix | for different beam-tip load P.

Nastran Linear Cases

All the data generated for the Nastran linear cases are listed in tables 11-17 of Appendix I. Note from
tables 1117 that for the Nastran linear cases, the lower and the upper surface strains at the same strain-

sensing cross sections have the same magnitudes. The Nastran outputs gave only vertical deflections, y;,
and zero axial displacements (that is, u, =0) (fig. 6a). Thus, Nastran linear case is equivalent to the
Shifted formulation. In the last columns of tables 1117, the corresponding theoretical vertical deflections,
y; , were calculated from the Shifted Displacement Transfer Functions in equation (6b) using the known
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depth factors, c,(= hl./2), and Nastran lower surface strains, &, listed in tables 11-17. The theoretical

deflections, y,, calculated from equation (7b) are not listed because both equations (6b) and (7b) gave
practically identical vertical deflections with maximum difference of only 0.08 percent at the beam-tip for
the present low-tapered cantilever tubular beam. The data listed in tables 11-17 of Appendix | were used
in plotting the following linear strain curves and vertical deflection curves for visual display.

1. Nastran Linear Strain Curves

Figure 10 shows surface strain curves associated at different load levels generated from Nastran linear
analysis of the tapered cantilever tubular beam based on data listed in tables 11— 17 of Appendix |. Note
that for linear cases, the magnitudes of the lower and upper surface strains at the same axial location are
identical, and increase linearly with increasing load, P. Note from figure 10 that for the present tapered
tubular beam, with tip-to-root depth ratio, (c,/c,) = 1/4, the linear strains increase almost linearly in the

span-wise direction in the inboard regions, reaching the peaks in the outboard regions, and then decrease
rapidly down to zero at the beam tip.

2. Vertical Deflection Curves

Figure 11 shows vertical deflection curves for the tapered cantilever tubular beam at different loading
levels calculated from the Shifted Displacement Transfer Functions [eq. (6b)] and from Nastran linear
analysis based on the data listed in tables 11-17 of Appendix I.

As shown in figure 11, the theoretical deflection curves [eq. (6b)] practically fell on top of the
corresponding Nastran-generated deflection curves, even up to very large bending under P = 600 Ib, with
beam-tip deflection reaching 94 percent of the beam span (see table 17 of Appendix ), and beam-tip slope
angle reaching 66 deg. (ref. 15). The good agreement between the vertical (straight) deflections calculated
from the Shifted Displacement Transfer Functions and from Nastran linear analysis, gives confidence in
the mathematical formulations of the Shifted Displacement Transfer Functions.

Nastran Nonlinear Cases

All the data generated for the Nastran nonlinear cases are listed in tables 18-114 of Appendix I. The
Nastran outputs gave both axial and vertical displacement, {u,,y.} (fig. 6b). Thus, Nastran nonlinear

analysis is equivalent to the Curved formulation. Note from tables 18-114 that the magnitudes of the lower
surface strains are slightly larger than the magnitudes of the associated upper surface strains. Such lower
and upper strain magnitude differentials could be attributed to the curved-beam effect, which induces
slight axial tensile strain components under nonlinear bending.

In the last columns of, the theoretical curved deflection, y, were calculated from the Curved

Displacement Transfer Functions [eq. (18b)] using the known depth factors, ¢,(=h,/2), and the true
bending strains (€, —€,)/2 [eq. (23)] using the Nastran-nonlinear strain data, {¢;,€,}, listed in tables
18114 of Appendix I. The theoretical deflections, y,, calculated from equation (19b) are not listed

because both equations (18b) and (19b) gave practically identical curved deflections for the present low-
tapered cantilever tubular beam case. For highly tapered flexible beam cases, equations (18b) and (19b)
can give slightly different curved deflections, y, (ref. 7). The data listed in tables 18—114 of Appendix |
were then used in plotting the following nonlinear strain curves and curved deflection curves for visual
display.
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1. Nastran Nonlinear Strain Curves

Figure 12 shows surface strain curves associated with different load levels generated from Nastran
nonlinear analysis of the tapered cantilever tubular beam using data listed in tables 17—114 of Appendix I.
In the plots of the upper surface strains, which are negative, only the magnitudes were used (dashed
curves).

For the nonlinear cases, the magnitudes of lower and upper surface strains at each load level are no
longer identical. Note from figure 12, that for the load less than P=100 Ib, the lower and upper strain
curves are equal. However, when the load level exceeds P=100 Ib, the magnitudes of upper strains in the
outboard region become slightly less than the corresponding lower strains, and the difference between
each set of lower and upper strain curves increases with increasing load. The difference between the
lower and upper strain magnitude for the present tubular beam case can be attributed to the curvature
effect induced by nonlinear bending, causing slight neutral axis shifting toward the compression boundary

(fig. 8).

2. Curved Deflection Curves

Figure 13 shows the curved deflection curves for the tapered cantilever tubular beam at different
loading levels calculated from the Curved Displacement Transfer Functions [eq. (18b)] and from Nastran
nonlinear analysis. For convenience, the horizontal displacements are neglected, and the deformed
material points were plotted on their respective undeformed x-locations.

As shown in figure 13, the theoretical deflection curves [eq. (18b)] practically fell on top of the
corresponding Nastran-generated deflection curves, even up to very large nonlinear bending under P =
600 Ib, with beam-tip deflection reaching 58 percent of the beam span, and beam-tip slope angle reaching
69 deg. (see table 2 and table 114 of Appendix I).

Lastly, by using Nastran nonlinear strains as inputs, the theoretical curved deflection curves
[calculated from eq. (18b)] and the corresponding Nastran-generated curved deflection curves [calculated
from eqg. (20)] are graphically coincidental (fig. 13). The excellent agreement between the curved
deflections calculated from the Curved Displacement Transfer Functions and from Nastran nonlinear
analysis, gives confidence in the mathematical formulations of the Curved Displacement Transfer
Functions.

Comparisons of Neutral-Axis Shifting Method and Axial-Strain Elimination Method

Based on Nastran-generated nonlinear surface strains for a typical case of P=600 Ib listed in table 114
of Appendix I, both the neutral-axis-shifting method and the axial-strain-elimination method were used to
obtain correct data for input to the Curved Displacement Transfer Functions [eq. (18b)] for calculations of
the slope angle, 6,, and curved deflections, y,, for nonlinear deformations. The resulting data are

compared in table 2.
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Table 2. Comparisons of slopes and curved deflections, {6,,y,}, calculated from Curved Displacement
Transfer Functions [eq. (18a) and (18b) for the P=600 Ib nonlinear case using two input methods:
1) Neutral-axis-shifting method and 2) Axial-strain-elimination method based on the Nastran nonlinear
strain data of table 114 of Appendix I.

Neutral-axis-shifting method Axial-strain-elimination method
Using calculated ¢, [eq.(21)] and Using known ¢;(=h,/2) and
Nastran nonlinear lower surface strains €; (table 114) true bending strains (g, — 5,-)/2 leq. (23)]
i ¢, in 0., deg y;,in ¢, in 0., deg y;,in
Calculated eq. (21) Eqg. (18a) Eq. (18b) Known (= h,./2) Eqg. (18a) Eq. (18b)
0 4.002 0.000 0.000 4.000 0.000 0.000
1 3.852 2.541 0.330 3.850 2.541 0.330
2 3.703 5.208 1.342 3.700 5.208 1.342
3 3.554 8.006 3.069 3.550 8.006 3.069
4 3.406 10.940 5.546 3.400 10.940 5.545
5 3.258 14.018 8.809 3.250 14.018 8.809
6 3.109 17.243 12.898 3.100 17.243 12.898
7 2.961 20.619 17.851 2.950 20.619 17.851
8 2.814 24.149 23.708 2.800 24.149 23.708
9 2.666 27.836 30.509 2.650 27.835 30.509
10 2.519 31.675 38.296 2.500 31.675 38.296
11 2.371 35.662 47.107 2.350 35.662 47.107
12 2.224 39.786 56.981 2.200 39.785 56.980
13 2.077 44.027 67.949 2.050 44.027 67.949
14 1.931 48.355 80.041 1.900 48.355 80.040
15 1.785 52.724 93.271 1.750 52.724 93.271
16 1.641 57.058 107.644 1.600 57.057 107.643
17 1.501 61.227 123.133 1.450 61.227 123.132
18 1.367 65.013 139.669 1.300 65.015 139.668
19 1.264 67.992 157.103 1.150 68.001 157.104
20 No data (0/0) 69.439" 175.138* 1.000 69.416" 175.138*
ANegligible differences (0.0331%) *Identical at beam tip,

Notice from table 2 that the slope angles, 6., and curved deflections, y,, calculated respectively from

equations (18a) and (18b) based on the Neutral-axis-shifting method and the Axial-strain-elimination
method are extremely close. These results show that either method could be used for the present tubular
beam case, for which the neutral axis is located at the half depth of the embedded beam. Remember that
the Axial-strain-elimination method is used to eliminate axial strains only when the neutral axis is located
at the half depth of the undeformed embedded beam. For a complex structure (for example, aircraft
wings) with unknown neutral axis location, the Neutral-axis-shifting method can be used to calculate the
unknown depth factors, c;.

Figure 14 shows the plots of both calculated and known depth factors, c,, using the c,-data listed in
table 2. Note that the calculated depth-factor curve lies slightly above the known depth-factor curve,
¢,(=h,/2), implying slight shifting of the neutral axis toward the concave (compression) side of the

deformed embedded beam, especially in the outboard region. The reason for the neutral axis shift is that
under large deformations, the difference between the magnitudes of the lower and upper surface strains at
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the same cross section increases in the highly bent outboard region (fig.12). Note that at the beam tip, no
data point is shown (table 2) because the beam-tip surface strains are zero, causing equation (21) to give
indefinite 0/0 value.

Linear-Nonlinear Transition

Figure 15 shows the plots of Nastran-generated beam-tip deflections, {y, .y, }, as functions of

applied load, P. The corresponding theoretical deflection curves calculated from the Shifted deflection
equation (6a) and Curved deflection equation (18a), respectively using Nastran linear and nonlinear strain
data, graphically fell on top of the corresponding Nastran deflection curves. Using Nastran linear strains,

the vertical deflection, y,, is a linear function of applied load, P. Therefore, the linear large deformation
is simply the scaled up version of the small deformation. However, using Nastran nonlinear strains, the
curved deflection, y, , increases convex upwardly with the applied load, P. Note from figure 15 that the

linear and nonlinear beam-tip deflection curves are practically the same up to P=100 Ib, at which the
beam-tip deflection to span ratio is (y,/l)=(y,/l) = 0.156, Beyond P=100 Ib, the linear and nonlinear

beam-tip deflection curves diverge. Therefore, for the present tapered cantilever tubular beam, the
normalized deflection of (y, /I)=0.156 can be considered as the borderline between linear and nonlinear

deformation regimes.
For the current long tapered cantilever tubular beam under the tip load of P=600 Ib., the beam-tip-
deflection-to-span ratio is (y, /)= (y,/l)=(175.138in.)/(300 in.) = 0.58, which is larger than the Helios

case of (beam-tip-deflection)/(half-span) = (40 ft)/(123.5 ft) = 0.32.

Similarity of Shifted and Curved Formulations

Note that the curvature-strain differential equations (5) and (8) have identical right-hand sides,
€(x)/c(x). For exploratory purposes, the vertical deflection, y, calculated from equation (6b) (Shifted

formulation) and the curved deflection, y, calculated from equation (18b) (Curved formulation) are
compared for the P=600 Ib nonlinear case. In the calculations of deflections, {y,y} , the calculated depth
factors, ¢, [eq. (21)], and the nonlinear lower surface strains, &, (table 114 of Appendix I), were used as
inputs. Table 3 lists the calculated results for the P=600 Ib nonlinear case.
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Table 3. Comparisons of slope angles, 6,, and deflections, {y,,y,}, calculated from Shifted and Curved
Displacement Transfer Functions for the P=600 Ib nonlinear case; calculated depth factors, ¢; (second

column of table 2), and nonlinear lower surface strains, ¢;, of table 114 of Appendix | were used as
inputs.

Shifted Displacement Curved Displacement
Transfer Functions Transfer Functions
i ¢, in g, infin tan 6, 6., deg y;,in 60.,rad | 6., deg y;,in
Calculated Nastran nonlinear Eq. (6a) Eq. (6a) Eq. (6b) Eq. (18a) Eq. (18a) Eq. (18b)
Eg. (21) lower surface strain
(table 114)
0 4.002 0.01155 0.000 0.000 0.000 0.000 0.000 0.000
1 3.852 0.01167 0.044 2.540 0.330 0.044 2.541 0.330
2 3.703 0.01177 0.091 5.194 1.342 0.091 5.208 1.342
3 3.554 0.01185 0.140 7.954 3.069 0.140 8.006 3.069
4 3.406 0.01191 0.191 10.810 5.545 0.191 10.940 5.545
5 3.258 0.01195 0.245 13.748 8.809 0.245 14.018 8.809
6 3.109 0.01194 0.301 16.749 12.898 0.301 17.243 12.898
7 2.961 0.01190 0.360 19.792 17.851 0.360 20.619 17.851
8 2.814 0.01182 0.421 22.855 23.708 0.421 24.149 23.708
9 2.666 0.01168 0.486 25.911 30.509 0.486 27.835 30.509
10 2.519 0.01148 0.553 28.935 38.296 0.553 31.675 38.296
11 2.371 0.01120 0.622 31.899 47.107 0.622 35.662 47.107
12 2.224 0.01084 0.694 34.776 56.980 0.694 39.785 56.980
13 2.077 0.01038 0.768 37.539 67.949 0.768 44,027 67.949
14 1.931 0.00980 0.844 40.163 80.040 0.844 48.355 80.040
15 1.785 0.00909 0.920 42.620 93.271 0.920 52.724 93.271
16 1.641 0.00819 0.996 44,881 107.643 0.996 57.057 107.643
17 1.501 0.00706 1.069 46.900 123.132 1.069 61.227 123.132
18 1.367 0.00559 1.135 48.611 139.668 1.135 65.015 139.668
19 1.264 0.00355 1.187 49.883 157.104 1.187 68.001 157.104
20 1.000 0.00037 1.212» 50.464 | 175.138* | 1.212" | 69.416 175.138*

*dentical  Mdentical

Note also from table 3 that the deflections, {y,,y,}, calculated respectively from the Shifted

deflection equation (6b) and Curved deflection equation (18b) using Nastran nonlinear surface strains,
turned out to be identical. Note also that the Curved slope angle, (0,).,,... » Which is the true slope angle

of the deformed embedded beam, reaching up to (6,),,.., =69 deg at the beam tip. On the other hand,
the Shifted slope angle (Gi)smﬁed is slightly smaller because the Shifting process reduces the slope angle,

causing the Shifted slope angle to reach up to only (Qn)smﬁed =~ 50 deg at the Shifted beam-tip (fig 5).

However, as shown in table 3, the slope (tanGi)Shiﬁed calculated from the Shifted slope equation (6a) has

exactly the same value as the corresponding slope angle (6,).,..; calculated from the Curved slope
equation (18a) [thatis,  (tan®,)g, s = (0,) e -
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Figure 16 shows the span-wise plots of slope angles {(6,)g,+(6,)c,n.e; @nd deflections {y,,y,}
based on the data listed in table 3 for P=600 Ib Nastran nonlinear case. Note from figure 16 that the
deflection curves of {y,,y,} form a single curve because(y, =y,). The (Gi)smﬁed -curve practically falls
on top of the (6,).,,... -curve in the inboard region up to strain-sensing station i = 4, and then gradually
diverge downward from the (0,),,.., -curve toward the beam tip (i=n).

Deflection Identity (y,=y,)

The unexpected discovery of the deflection identity, y, =y, (table 3, fig. 16), indicates that the
Shifted vertical deflection, y,, is actually the straightened version of the Curved deflection, y,. This
deflection identity, y, =y,, can be explained as follows: The Shifting of the deformed material points
(lying along the neutral axis) to their respective original undeformed x-positions [that is, # — 0] causes
(a,’y/dx)2 — 0 (details in Appendix A, ref. 9), thus the Lagrangian curvature equation (4) is reduced to
the mathematical form similar to the Curved curvature equation (10) as shown below in equation (28):

Increased to maintain
same £(s)/c(s)

2 2 2 2 2 2=
1 _ dy/dx _ dy/dx :dy:dy:é‘(s) (28)
R(x)  \1-(dy/dx}  Tiaiar=ol J1-0 A A co(s)

Shifted Curved

Increased

Equation (28) shows that, based on the same undeformed x-system, the correct Shifting process will
cause the value of y to match the value of y to maintain the same value of &(x)/c(x), resulting in the

deflection identity y, =y, (table 3).

Correct Shifting

The original horizontal shifting of point A” to point A” shown in figure 5 was found not to be an
accurate process of obtaining the true Shifted deflection, y, and, therefore, the shifting process need to be

modified.
Figure 17 is the amended figure 5 and graphically shows that the correct Shifting is not the horizontal
Shifting (fig. 5), but is to move point A” to point A” in such a way as to bend the curved deflection, y,

into the equivalent Shifted vertical deflection, y . Thus, the Shifted Displacement Transfer Functions, just

like the Curved Displacement Transfer Functions, are also applicable to shape predictions of structures
under large geometric nonlinear deformations provided the value of the Shifted slope

(tan 6, )g,is04[= (0,),neq ] is treated as the true slope angle because the shifting process will reduce the
true slope angle, £B’A’C , to a smaller shifted angle, ZB”A”C” (see fig. 3 and table 3)-

Prediction Errors

Table 4 lists the beam-tip deflections {y, .y, } of the tapered cantilever tubular beam under all

loading cases calculated respectively from the Shifted [eq. (6b)] and Curved [eq. (18b)] Displacement
Transfer Functions, and from Nastran linear and nonlinear analyses. The percent prediction errors listed in
table 4 were calculated from the error equations (26) and (27) respectively for vertical and curved
deflection cases.
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Table 4. Comparisons of beam-tip deflections, {y, ,y }, of the tapered cantilever tubular beam,

calculated from Shifted and Curved Displacement Transfer Functions and from Nastran linear and

nonlinear analyses.

Straight deflectiony, , in Curved deflection fn, in

Shifted Curved
O I e IRl Wl e el B
(Reference) Functions Ea. (26) (Reference) Functions Eq. (27)

Eq. (6b) Eq. (18b)
50 23.406 23.424 0.0769* 23.210 23.220 0.0431
100 46.811 46.828 0.0363 45.337 45.374 0.0816
200 93.623 93.669 0.0491 83.903 84.082 0.2133
300 140.434 140.502 0.0484 114.508 114.820 0.2725
400 187.245 187.314 0.0369 138.776 139.187 0.2962*
500 234.057 234.161 0.0444 158.439 158.866 0.2695
600 280.868 280.970 0.0363 174,763 175.138 0.2146

*Peak errors

Note from table 4 that at P=600 Ib, the beam-tip curved deflections, fn, (predicted or Nastran-
generated) is only about 62 percent of the corresponding beam-tip vertical deflections, y  (predicted or
Nastran-generated). Note also that for vertical deflection cases, the prediction errors are extremely small,
in the range of 0.0363 percent to 0.0769 percent, with a peak prediction error of 0.0769 percent that
occurred at P=50 Ib. For the curved deflection cases, the prediction errors are slightly larger than the
vertical deflection cases, but still in the small range of 0.0431 percent to 0.2962 percent, with the peak
prediction error of 0.2962 percent (3.85 times the peak prediction error of 0.0769 percent for the vertical
deflection case) occurring at P=400 Ib.

Figure 18 shows the prediction errors listed in table 4 plotted as functions of applied beam-tip load P
for vertical and curved deflection cases. For the vertical deflection cases, the prediction error curve is
almost horizontal, indicating that the prediction error is practically insensitive to the applied load, P. For
the curved deflection cases, the prediction error increases convex upwardly with applied load, reaching
the peak of 0.2962 percent at P=400 Ib, and then slightly tapering down to 0.2146 percent at P=600 Ib.
Keep in mind that the Nastran curved deflection (y),, appearing in the prediction error equation (27)
(fig. 5) is calculated from the straight-to curve-deflection conversion equation (20), which gives circular
arc deflection for (y),, . However, the theoretical curved deflection y is not a true circular arc. The

slight decrease in the prediction errors beyond P=400 Ib (fig. 18) could be attributed to the slight decrease
in the difference between y (non-circular curve) and (y),, (circular curve) at increasing bending with

outboard region bend more than the inboard region because of the tapered beam (table 4).

DISCUSSIONS

To use the Shifted and Curved Displacement Transfer Functions to calculate out-of-plane deflections
for structure deformed shape predictions, the following input parameters are required.
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1. Lower and upper surface strains, {¢,,€;} (i=1,2,3,...,n)—measured at strain-sensing stations
evenly distributed along the lower and upper strain-sensing lines on the embedded beam surfaces
(assuming the location of neutral axis of the embedded beam is unknown). For the calculations of
overall deformed shape of the structure (For example, aircraft wing) under bending and torsion
loading, an additional embedded beam is needed to form four-line sensing system.

2. Domain lengths, Al(=1[/n)—once the distribution of strain-sensing stations is defined, the
domain length, A/, (strain-sensing station separation distance) is specified.

3. Embedded beam depth, £, , at strain-sensing stations i (known for a given structure).

4. Depth factors, ¢, (i=1,2,3,...,n)—usually unknown for complex structures, and must be

calculated from equation (21) for each embedded beam using pairs of lower and upper surface
strains, {¢;,€;}, and the embedded beam depth, A, .

If the depth factors, c,, are known, only the lower surface strain-sensing line is needed (fig. 3). For

very large geometric nonlinear deformations, the neutral axis can shift with the load level and, therefore,
the depth factors must be constantly updated using equation (21) at each loading level.

CONCLUDING REMARKS

Using the true curved deflection, y, the embedded beam curvature-strain differential equation was

piecewise integrated to formulate the Curved Displacement Transfer Functions for geometrical nonlinear
large deformation structure shape predictions. Nastran linear and nonlinear analyses were performed on a
tapered tubular cantilever beam to analytically obtain surface strains needed for inputs to the Shifted and
Curved Displacement Transfer Functions for shape predictions. The Nastran-generated deflections were
then used as a validation reference to study the shape prediction accuracies of the Shifted and Curved
Displacement Transfer Functions. Some highlights of the results are listed below.

1. For large deformations, one must use the true curved deflection, the curvilinear distance traced by
a material point from its undeformed position to its deformed position. The traditional vertical
deflection is merely a vertical component of the true curved deflection.

2. The vertical deflections calculated from the Shifted Displacement Transfer Functions and the
corresponding curved deflections calculated from the Curved Displacement Transfer Functions
were found to be exactly the same, implying that the vertical deflections based on the Shifted
formulation are actually the straightened version of the curved deflections based on the Curved
formulation.

3. By replacing {¥,,(6))c,eet With {y,,(tan8,)g,...}, the Curved Displacement Transfer
Functions can become the Shifted Displacement Transfer Functions.

4. Both the Shifted and Curved Displacement Transfer Functions are very accurate, and are
applicable to the shape predictions of the cantilever tubular beam under geometrical nonlinear
large deformations with beam-tip deflection reaching as high as 58 percent of the span, for which
the beam-tip slope angle reaches 69 deg.
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The Shifted and Curved Displacement Transfer Functions are purely geometric in nature, and
therefore, one can compute the correct deflections whether the input surface strains come from
linear or nonlinear deformations.

For vertical deflection cases, the prediction error of using the Shifted Displacement Transfer
Functions is in the negligible range of (0.0363—-0.0769) percent, and is practically insensitive to
the change of applied load.

For the curved deflection cases, the prediction errors of using the Curved Displacement Transfer
Functions are in the small range of (0.0431-0.2962) percent, slightly larger than the vertical
deflection cases; because Nastran curved deflection is a circular arc, but the theoretical curved
deflection is not a circular arc.

For nonlinear deformations, the magnitudes of the lower and upper surface strains at the same
strain-sensing station can be slightly different because of the curved-beam effect, which induces
neutral axis shifting and small axial strain components.

For nonlinear deformations, either the Neutral-Axis-Shifting Method or the Axial-Strain-
Elimination Method can be used to obtain correct data (depth factors, bending strains) for input to
the Displacement Transfer Functions for shape calculations.



FIGURES

EDO03-0180-02

Figure 1. A super-long flying wing Helios prototype (wing span 247 ft) under very high wing dihedral
deformation just before breaking up.

EDO03-0180-03

Figure 2. Helios Prototype broke-up in mid-air on June 26, 2003 at 2800 ft altitude under very large wing
dihedral deformation (wing tip deflection reaching 40 ft), and fell into the Pacific Ocean.
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Figure 3. Embedded beam (depth-wise cross section) of the tapered cantilever tubular beam with strain-
sensing stations evenly distributed along lower and upper surface strain-sensing lines.
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Figure 4. Small segment of a deformed nonuniform embedded beam for geometrically relating local
radius of curvature, R(s), to associated surface bending strain, €(s), and depth factor, c(s).
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Figure 5. Actual elastic curve of a deformed embedded beam, showing true curved deflections, Y the
curvilinear distances traced by the material points from their undeformed positions to respective deformed

positions. Horizontal Shifting converts curved deflection, Y. into vertical deflection, ¥, with reduced
slope angle (ref. 15).
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Figure 6a. Shell-element model for linear analysis.

Figure 6. Undeformed and deformed shapes of Nastran models of the tapered cantilever tubular beam
subjected to beam tip load, P, for linear and nonlinear analyses.
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Figure 6b. Beam-element model for nonlinear analysis.
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Figure 7. Graphically converting Nastran nonlinear deflection outputs, {«,,y,}, into a circular arc
length, y,, for comparison with the theoretical curved deflection, y, .
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Figure 8. Using lower and upper surface strains, {g;,€;}, to obtain lower and upper depth factors,
{c;,c,}, based on neutral axis shifting in nonlinear bending.
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Figure 9. Using lower and upper surface strains, {¢,,€,}, to obtain true bending strains, (g,—¢,)/2,
eliminating axial strain components induced in nonlinear bending; known depth factor, ¢, = h,/2 .
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Figure 10. Span-wise distributions of lower surface strains, &,(=—¢€;), generated from Nastran linear
analysis of the tapered cantilever tubular beam subjected to different beam-tip load, P.
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Figure 11. Comparisons of vertical deflection curves for the tapered cantilever tubular beam under a
different beam-tip load, P, calculated from the Shifted Displacement Transfer Functions [eq. (6b)] and

calculated from Nastran linear analysis.
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Figure 12. Span-wise distributions of lower and upper surface strains, €,(=—¢;), generated from Nastran
nonlinear analysis of the tapered cantilever tubular beam subjected to a different beam-tip load, P.
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Figure 13. Comparisons of curved deflection curves for the tapered cantilever beam at a different beam-
tip load, P, calculated from the Curved Displacement Transfer Functions [eq. (18b)] and calculated from
Nastran nonlinear analysis.
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Figure 14. Plots of known and calculated depth factors, c;, for the tapered cantilever tubular beam

showing slight neutral axis shifting due geometric nonlinear deformations, especially in the outboard
region; P=600 Ib nonlinear strain case.

300.0 7
270.0

T P
’ Linear cas%

<«
Linear ! Nonlinear
regime: regime

Linear y,

.0

,’”-‘
‘3"‘— -
" Nonlinear Y

N

\

’ Nonlinear case

200 300 400 500 600
Beam-tip loads, P, Ib

0

—
I P I

Yn

0.156

l 160217

Figure 15. Linear (vertical) and nonlinear (curved) beam-tip deflections, {y, ,y,}, of the tapered

cantilever tubular beam plotted as functions of the applied beam-tip load, P. The theoretical deflection
curves [egs. (6b) and (18b)] and the corresponding Nastran-generated linear and nonlinear deflection
curves are graphically indistinguishable.
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Figure 16. Span-wise plots of slope angle, 6., and deflections, {y,,y, }, of the tapered cantilever

tubular beam calculated from the Shifted and Curved Displacement Transfer Functions [egs. (6a), (6b),
(18a) and, (18b)] using the same Nastran-nonlinear strain data for P=600 Ib listed in table 3.
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Figure 17. Correct Shifting of deformed material points to their respective undeformed x-locations to
bend curved deflection, y, into an equivalent straight (vertical) deflection, y (= y); actual slope angle,

0(s), turns into slope, tanB(x)[=6(s)], for the Shifted case.
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Figure 18. Plots of linear (vertical) and nonlinear (curved) beam-tip deflection prediction errors as
functions of beam-tip load, P.
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APPENDIX A
DERIVATIONS OF SLOPE ANGLE AND CURVED DEFLECTION
EQUATIONS IN RECURSIVE FORMS FOR NONUNIFORM
EMBEDDED BEAMS

Appendix A shows the mathematical details of stepwise integrations of the slope equation (15) and
the deflection equation (17) for the nonuniform embedded beams to obtain the final mathematical forms
given respectively by nonuniform parts of equations (18a) and (18b).

Piecewise Linear Strain Representations

For the piecewise integrations of the slope equation (15) and deflection equation (17), both the depth
factors and surface strains, {c(x),€(x)}, in the domain x, , <x <x, between the two adjacent strain-

sensing stations, {x, ,,x;}, can be expressed with linear functions given respectively by equations (Al)
and (A2) [duplications of equations (11) and (12) respectively]:

c(x)=c¢_,—(¢c,—c;) al _A)ZCH ;o (x, <x<x) (A1)
e(x)=¢€,, — (g —€)> _A’;f-l  (x_, <x<x,) (A2)

Slope Angle Equation

The slope angle, 8(x), of the nonuniform embedded beam in the domain x, , <x <x, between the
two adjacent strain-sensing stations {x, ,,x;} is given by equation (A3) [duplication of equation (15)]:

i-1°

e(x)

o= S0 (x, <x<x)
i1 C .x —— ( A3)
-~ Slope
Slope increment atx;

Substitute equations (Al) and (A2) into equation (A3), and carrying out the integration as follows in
equation (A4) (ref. 21):

X=X

AL gy + 0., =

€.~ (gi—l - ei)

0(x)= J.:l

¢, —(c,—¢)
(€, —€) &,(c,—¢)

E. C.,—C.
= ﬁ(x X))+ Al (e —c ) Al {loge |:_([lTll)(x_xi—l)+ci-1:|_loge Ci—l}-l_ei—l
i—1 Ni-l T

(ALY’
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E. c.—E.C C.,—C:
ﬁ(x X 1)+Alﬁ{loge [_%(x_xi—l)+ci—l:|_loge Ci—l}+9i—l (A4)
i—1 i—1

At the strain-sensing station, x;, one can write x;, —x, , = Al, and equation (A4) yields the slope angle
0.[= 0(x,)] at the strain-sensing station, x,, as equation (A5):

£ -
0A—;AI+AIM lo —log,c,_,)+0, : =1,2,3,...

i (Cl ] Ci) (C, 1 Cl-) ( ge i ge z—l) i-1 ’ (l ] an) (A5)
After grouping terms, equation (A5) becomes the final form of the slope-angle equation (A6) for the
nonuniform embedded beams:

—€ &, —Eg

l “tlog, : A6
0 Al|:(C )_ (C C)zllogec_ +0,-_1 , (121,2,3,...,11) ( )
-1 i i1 i 1

Equation (A6) is the nonuniform part of equation (18a) in the text.

Curved Deflection Equations

The curved deflection, y(x), of the nonuniform embedded beam in the domain x,_, <x<x,
between the two adjacent strain-sensing stations, {x, ,,x,}, is given by equation (A7) [see equation

Anl:

y(x)= J:]|:J.x E(X)dx‘l'e :|dx+§i—1 = Jjﬁ]e(x)dx-i_yi—l ; (L sx<x)

Xic1 C(X) (A7)

0(x)

Substitute equations (A1) and (A2) into equation (A7), and carrying out the integration as follows in
equation (A8) (ref. 4):

X—X._
_ x x :—1_(85—1_81') Alll _
y(x):J; _[ —x +0., dx+y., =
i-1 i1 i-1
C._,—\(C_,—¢C
-1 ( i—1 I) Z&l
0(x)
x | &, c.—EC, C. ., —C.
:J. {ﬁ(x xl1)+Alﬁ|:loge(—(’lTl’)(x—xi1)+Ci1)—10geci1i|}dx
i—1 i-1 i

+ yi—l + (x — X )ei—l
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£,_,C;—EC;

ii—1

Al (A8)
x{[log (M(x—x )+c, j—log C, }—(—M)(x—x. )}+§4 +(x—x._,)0.
e Al i—1 i-1 e “i—-1 Al i—1 i—1 i—1 i—1

At the strain-sensing station, x;, one can write x, —x, , = Al, and equation (A8) yields the curved
deflection, y,[= y(x;)], at the strain-sensing station, x; , as equation (A9):

~ €€ 2 2 €6 —EC
V=AD" = (Al ———5
2(Ci—1 - Ci) (Ci—l - Ci)3
—(c,,—¢,) } ( —(c,,—¢) j (¢,,—c,) _
X< —=—Al+c, log | —=——=Al+c,, |-log c , |[+———Al;+y. ,+(ADO.
{|: Al i—1 ge Al i—1 ge i—1 Al yl—l ( ) i—1

(A9)

£, —E&, E._.C,—EcC, _
=(Al) {2(;1 _cl ) _ z(—cl i - cl )1371 [Ci (loge c,—log,c,, ) +(c,_, — c,.)]} +y._,+(ADO,,
i—1 i i—l1 i
(i=12,3,...,n)

Equation (A9) can be written in the final form of the deflection equation for the nonuniform embedded
beams as equation (A10):

i ii—1

20, —¢) (e — Ci)3

=&  ELCTEC |:Ci log, S +(c, — Ci):|} +y., +(ADI,

Ciy

v, = (Al)? {
(A10)

(i=12,3,...,n)

Equation (A10) is the nonuniform part of equation (18b) in the text.
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APPENDIX B
DERIVATIONS OF CURVED DEFLECTION EQUATIONS IN
SUMMATION FORMS FOR NONUNIFORM EMBEDDED BEAMS

Appendix B presents mathematical steps to obtain the final dual summation forms given by the
nonuniform part of equation (18c). The slope-angle equation (A6) and the deflection equation (A10) in
recursive forms for nonuniform embedded beams are duplicated below as equations (B1) and (B2).

Slope angle equation:

€L G TEC

i

E —€& c
: log < |46, (i=12.3.... B1
(Ci—l - Ci) (Ci—l _ Ci )2 ge ¢, :| i-1 (l I’L) ( )

0.= Al[
Curved deflection equation:

i -1

20, —¢) (e — Ci)3

E.,—€  E&.,C—EC [

Ciy

y, = (ALY { ¢ log, . +(c, — Ci):|} +y,, +(ADO,, (B2)

(i=12,3,...,n)
Equations (B1) and (B2) can be combined into a single deflection equation in dual summation form

as follows. Writing out equation (B2) for different indices, i, and making use of the indicial relationships
expressed in equations (B1) and (B2), one obtains equations (B3) through (B6):

Fori=1:
5= h _RGTEG [cl logei+(co—cl>} 5, +(ADB, (83)
2(cy—c¢;) (cy—c) C
Fori=2:
[T ) i i B L {cz logeﬁ+(cl—c2)} +3,+(AD,
2(c,—c¢,) (¢,—c,) (e

=<Al>2{ 0t GGG [czlogﬁﬂcl—cz)ﬂ
C

2(c,—¢c,) (¢—c,) l

N

+Aly =2 Th 54 T8% [c, logeﬁ+(c0—c,)} +3, +(ADB,
2(cy—¢;)  (¢y—cy) Co

(A06,
(A7 [80 —E L B4 T g i} +(ADB,
=¢ (¢ 0
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- £c,—&,C c £,—€ £, —E&C c
=(Al R 2 21iclog 2+(c,—c,) [+—2>—1 -1 L% ¢ Jog —L+(c,—c
( ) {Z(C] ) (CI—C2)3 |: 2 ge Cl (1 2):| 2(C0—C1) (CO—CI)3 |:I ge CO (0 1):|}

€ =& &0~ 8001 og
e

+ (Al){ }+ 3, +2(ADB,

co—¢ (c,—¢) C
(B4)

Fori=3;:

—(A {28 _BGTEG] log, S (e, —cy) [+ 5, +(ADG,
2(c2 c;) (c,—¢) i c

2

E,— € E,c,—E;C - C 1
=(Al)? 23 23 B2 clog —=+(c,—c
( ) {2(6‘2—6'3) (C2—C3)3 I 3 ge C2 (2 3) }

Y2

(Al) { —& _E&H” 826;1 |:C2 loge p +(c, - )}4‘ fH _S47 81650 |:Cl loge ? +(¢y — Cl):|}
1

2(C1 - C2) (Cl —C, ) 2(C0 - C]) (Co - Cl)% 0

F(AD?| S5 SO B g G }+y0+2(Al)9

Leo—¢ (e=¢) Co

(A1)6,

Ay | B8 BT8G5 G B TE  AGTEG 0 G }(Al)e

L ca—¢,  (¢—¢,) ¢ c¢—c¢ (c,—¢) [N

—& 8 c,—E&;C Cc & —€ EC —&,C C
= (Al)? 3 22232 clog, 2 +(c,—c )} 2 22 l[c log,—%+(c,—c¢ )}
2(C2_C3) (c,—¢)’ L ’ ) Y 2(c 1_02) (¢,—¢,) ’ | b

¢ lo i+(c —-c)
2(c0 cl) (co—c1)3_1 geco o

—& E,C, — &€
lo ge I, R W, Llog, —+
c—c, (¢—c C Co—C (cg—¢

} Y, +3(AD8,
Co

(B5)
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v, = (A58 G TES {04 log, <+ (c, — c4)} +,+(ADS,
2cy—c,)  (c3—c,) Cy

E,—E E.c,—E,C c
=(Al)’ 34 54 431 e log A4 (c,—c
(40 {2(03_04) (03_04)3 |: % G @ 4)i|}

Y3

—& E,C, — ELC E —& Ec,—&EC C
(Al)? 2 —4 2[ logé 2+ (c, — c\):|+ L 2 12 7 ‘[c log, = +(¢c,—c¢ )}
{2(c2—c3) (c,—¢;) c, o 2c—c) (=) | e 7

E,—& € —EC,
+ + - loge +(¢,—c¢ )}
2(c,—c) (c,—¢,) { [N ¢

—§ & —

€6, — &, 1

+(Al)2[8‘_82+ S 05878 5 8% jog, &L }+y0+3(Al)9
=6 (CI_CZ) ¢ Co—C€ (CO_CI Co

E,—E E,c;—&5C c E—-E& Ec,—&C c
2 3+ 2-3 32210 _3+ 1 2+ 172 2 110 2
c,—c;  (c,—¢y) c, ¢—c¢ (¢—c) e

(o e 1) CO}+(AI)9

€, EC,—EC E,— €,  E,0,—EC,

6. ) Gy
= (Al {2(03 c) (c3—c4)3 |:C4 logec_3+(c3 C4)_ 2c,—cy) (62—63)3 |:0310ge C2+(C2 C3)}

£ -& €6, — & | & & &G &6
+ — loge +(c,—c,) |+ — [ loge +(c, — )}
2¢-¢,) (¢-¢) [ o ] 2Aeme) (g—¢) Q

E,— & E,C,—E,C C E — & EC,—E,C C E,—E&E EC, —EC, C
+(Al)2|: 278 66 32210ge_3+2 =% 555 221 loge—2+3 O W 12010ge_1:|
G,—¢ (6—¢y) ¢ €—G (¢, —¢,) G GG (¢h—¢ Co
+y, +4(AD6,
(B6)

Based on the indicial progression patterns in equations (B3) through (B6), one can write the curved
deflection, y,, in a generalized form with two summations (with different summation limits) as equation

(B7):

L ELCTEC < B
y. = (Al) 2{2@ ¢ {cjlogec +(c;, cj)}}

(¢~ cj) -1
(B7)

—&. E. —&
+(A) 2(1— 1){ LB E L i I } 3, +()(ADS,
j=1 ci—¢; (e - Cj) Cia

(i=12,3,...,n)
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Equation (B7) is the nonlinear part of equation (18c) in the text. A set of three equations (B1), (B2), and
(B7) are called Curved Displacement Transfer Functions for the nonuniform embedded beams.

It must be mentioned that equations (B1), (B2), and (B7)} or egs. (18a)—(18c¢) in the text cannot be
applied directly to the uniform embedded beam because, in the limit of (¢, , = ¢;), the logarithmic terms
and the denominators with (¢, , —c;) factors will go to zero [that is, log,(c;/c,,)=0, (¢,,,—¢;,)=0],
causing mathematical indeterminacy. Therefore, for the uniform embedded beams, slope and deflection
equations can be derived separately using a constant depth factor, c(x)= c, in the piecewise integrations

of equation (13) as shown in Appendix C.
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APPENDIX C
DERIVATIONS OF SLOPE ANGLE AND CURVED DEFLECTION
EQUATIONS IN RECURSIVE FORMS FOR UNIFORM
EMBEDDED BEAMS

Appendix C presents the details of integrations of the slope angle equation (15) and the curved
deflection equation (17) for the uniform beams based on piecewise linear strain representations to obtain
the uniform parts of equations (18a) and (18b) for the uniform embedded beams.

Slope Angle Equation

For the uniform embedded beam with constant depth factor, c(x)=c, the slope angle equation (15)
[or equation (A3) of Appendix A] for the domain x, , <x <x; between the two adjacent strain-sensing
stations, {x,_,,x,} , becomes equation (C1):

i—-1°
(x) :
0(x) = j ——dxt 0, 5 (g Sxsx)

%,—/ Slope
Slope increment atx;_;

(C1)

Based on the linear representation of surface strains, £(x), in the domain x, , < x < x; shown in equation
(C2):

&(x)=¢_—(,—-¢€) A)ZC = 5 (Sxs<x) (C2)

equation (C1) can be integrated to yield equation (C3) (ref. 21):

e(x)_—j

X;.

1 (x=x_ )
= Z{gil(x - -xl;l)_ (81‘71 - gi)Tlli|+ 91‘—1

I: &.,—(&.,—¢€) Al i|dx +6,,
- Al (C3)

At the strain-sensing station, x,, one can write x, —x, , = Al, and equation (C3) yields the slope angle,
0.[=0(x,)], at the strain-sensing station, x;,, as equation (C4):

(Al )
2Al

el._l[ £ (A)—(e, } 16, i (i=123...n) (c4)
C

After grouping terms, equation (C4) takes on the final form of the slope angle equation for the uniform
embedded beam as equation (C5):

6. =§(8i_1+8i)+9,-_1 ; (1=12,3,...,n) (CS)
C

Equation (C5) is the uniform part of equation (18a) in the text.
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Curved Deflection Equations

For the uniform embedded beam with constant depth factor, c(x) = c, the curved deflection equation
(17) for the uniform embedded beam in the domain x, , < x < x, between the two adjacent strain-sensing
stations, {x,_,,x,} , becomes equation (C6):

l

_ X x € ~ X ~
=] [ ®aveo facrs, =] owars o, sesa)

6(x)

(C6)

Substitute equation (C2) into equation (C6), and carrying out the integrations as follows in equation (C7)
(ref. 19):

X=X

y(x)= %J‘:I J‘; ‘:gil —(&.,—€) :|dx dx+y,, + J.; 0, dx

L ()C — X )2 ~
= ZJ;H |:£i—1 (-x — Xy ) - (81'—1 - gi)Tll:Px + Vi + (.x — X )9[._1 (C?)
1 (x-x) (x=x.) ] _
= 2[8,»1 Y —— (&, - 8,.)6Tll +y,+(x—x,_)0,,

At the strain-sensing station, x,, one can write x;, —x, , = Al, and equation (C7) yields the curved
deflection, y.[= y(x;)] at the strain-sensing station, x,, as equation (C8):

c

. —(&. ,—E&.
i i-1 2 ( i-1 1) 6Al

2 3
“—1[3 (@) (4D :|+§i_l+(Al)0i_l C((=1,2.3,m) (c8)

After grouping terms, equation (C8) takes on the final form of curved deflection equation for the uniform
embedded beam as equation (C9):

- (Al)?

i

. (26, +¢€)+y_ +(ADO,, ; (i=1,2,3,..n) (C9)
C

Equation (C9) is the uniform part of equation (18b) in the text.
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APPENDIX D
DERIVATIONS OF CURVED DEFLECTION EQUATIONS IN
SUMMATION FORMS FOR UNIFORM EMBEDDED BEAMS

Appendix D presents mathematical steps to obtain the final summation forms of the curved deflection
equation given by the uniform part of equations (18c) using the slope angle equation (C5) and the curved
deflection equation (C9) in recursive forms for uniform embedded beams. Equations (C5) and (C6) are
duplicated below respectively as equations (D1) and (D2):

Qi:§(8H+gi>+9i_l L ((=1.2.3,0) (D1)
C

2
Vi = (AIC) (2£i—1 +£i)+yi—l +(ADO,., (=12.3,..n) (b2)

i

By combining equations (D1) and (D2), one can obtain a single curved deflection equation for y,,
which can be written out for different indices, i, in the forms of equations (D3) through (D6):

Fori=1;

2 (D3)
5= (26, +2)+ (A0, 45,
C

Fori=2;

(A _
y2=( ) (2e,+&,)+y,+(ADO,

C
(Al)? (Al)? _ @y
= ?(281 +82)+ oc (280 +81)+(Al)90 + Yo +7
Vi (A6,

Al)? Al)? ~
( c) (280+£1)+%(80+8i)+y0+2(Al)90

(D4)

(g, +€)+(ADO,

_ @y

o (2e, +&,)+

Fori=3:

_ Al)? _
Vi = (6c) (2e,+€,)+y, +(ADS,
(Al

6¢

(A)?

(Al)? -
2¢, +gl)+2—(e0 +€,)+y, +2(AD8, (D5)
C

(2¢, +83)+?(281 +82)+ﬂ(

(A’

2c

(¢, +82)+(A2i(80 +€)+(ADB,
C

+

(AD6,
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D) (282+83)+(A1) (281+82)+(Al) (2eo+gl)+ﬂ(el+82)+2&(80+81)
6¢ 6¢ 6¢ 2¢ 2¢
+¥, +3(A1)6,
Fori=4:
_ @y 5
Be== (2e,+¢€,)+ 9, +(ADD,
(Al)? (28 te )+(Al)2 (28 +& )+(Al)2 (28 +8)
:(A61) (2e,+e,)+ ¢ > o 2
c A e e )42 8D (g e )T, +3(A0,
2c 2c A (D6)
(Al) (Al (Al)* |
= (e, +e,)+ (£1+82)+—2c (& +&)+ (A8,
(A8
O (00, +2,)= B0 (26, 4e)+ 2 (22, 42,)+ (26, v
C C

Al)’ Al)’ Al _
(26) (32+e3)+2( C) (81+82)+3%(80+81)+y0+4(Al)90

+

Based on the indicial progression patterns in equations (D3) through (D6), one can write the
deflection, y,, in a generalized form with two summations (with different summation limits) as equation

(D7):

= O3 e e + B S - xe,  vep) + 5, + AN,
J=l ! ! 2¢c ! / = (07)

a 6¢

Contributions from deflection terms

=1 =0 for cantilever beams

Contributions from slope terms

(i=1,2,3,...,n)

Equation (D7) is the uniform part of equation (18c) in the text. A set of three equations {(D1), (D2),
and (D7)} are called the Curved Displacement Transfer Functions for the uniform embedded beams.
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APPENDIX E
DERIVATIONS OF IMPROVED SLOPE ANGLE AND CURVED
DEFLECTION EQUATIONS IN RECURSIVE FORMS FOR
NONUNIFORM EMBEDDED BEAMS

Appendix E presents the details of integrations of the slope angle equation (15) and the curved
deflection equation (17) for the nonuniform embedded beams to obtain the final mathematical forms
given respectively by the nonuniform parts of equations (19a) and (19b).

Piecewise Nonlinear Strain Representations

For the piecewise integrations of the slope angle equation (15) and the curved deflection equation
(17), the depth factors and surface strains, {c(x),€(x)}, in the domain x, , <x<x, between the two

adjacent strain-sensing stations, {x, ,,x,}, are described respectively with the following linear and
nonlinear functions [egs. (E1) and (E2)] [duplications of equations (11) and (13a)} respectively]:

X=X

c(x)=c,_ +(c; - CH)TH ; (., Sx<x) (E1)
3¢, —4e +¢ 2e. 4+ €
gx)=¢_——- Al (X =x,)+ W’”( X)) 5 (x,<x<x) (E2)

Improved Slope Angle Equations

The slope angle, 6(x) of the nonuniform embedded beam in the domain x,_; <x <x, between the

-1 =
two adjacent strain-sensing stations, {x, ,,x;}, is given by equation (E3) [duplication of equation (15)]:

i-1°

e(x)

d+9 ;o (L, <x<x)
s c(x)

o =]
Slope

Slope increment atx;_

(E3)

Substitution of equations (E1) and (E2) into equation (E3) yields equations (E4) through (E8):

3., —4€e +E, - —2&.+E,
£ — € &TE&, (X—xi_1)+ € & 5 € (x_xi_1)2
2Al 2(AD)
¢, —C

C,,t
2Al

0(x)= j dx+6,_, (E4)

(x—x._,)

Let

e —4e e,
2Al

A

(ES)

2(Al)

oo
Il

(E6)
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C=—"——>=" (E7)

E=(x—x_) (E8)

then equation (E4) takes on the following simplified form shown in equation (E9):

e, +AE+BE
¢, +C¢&

After carrying out integration of equation (E9), one obtains equation (E10) (ref. 19):

0(x)= | dE+96,, (E9)

_ ¢

€ S

Sillog (¢ +CE) +AZ—ASlog (¢ +C

C ge( i1 5) C C ge( i-1 5)
Integration of 1st term in eq. (E-4) Integration of 2nd term in eq. (E-4)
0 (5 )= Bl +0,,
+F[E(C"“ +CE) =2¢, (¢ +CE+c] log, (¢, + cg)}
L Integration of 3rd term in eq (E-4) o

2

:(8 A’1+B(’:ljloge(cll+cé)+ ¢§+——

B
C C? 2O (¢ + C§)2 - ZFCi—l(Ci—l +C&)

2
. I B B
(a5 g, - B 2 0
c ' C C C
1 4 (E10)
= _3|:C2£i—1 —ACc, + Bciz—l [loge (it Cf) ~log, ci, ] N Eé

+——|:(C,1+C§) - ,1] 2 C’ zl[(C11+C§) Ci- ]

1 A
= F[ngifl —ACc,_, + Bc}, [loge(cH +C&)—log,c, , ] + Eé

1B B
+ _F(th‘—léj + ng)_ 2?@'—15 +0,,

1 A
= F[ngifl —ACc,_, + Bc}, [loge(cH +C&)—log,c, , ] + Eé

N %%[_2@—15 + CéZ] +0.,
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In view of the definitions in equations (E5), (E6), (E7), and (E8), equation (E10) takes on the following
form shown in equation (E11):

0(x)= (Al)* c. (¢, — Ci—l)2 n (Be, —4e +¢e,)(c—¢) c o+ (&,—2¢&+ 8i+1)cg
(c,—c. )’ 7 (Al 2Al Al 2(Al)’ -
c,—cC,_ 3¢, —4e +¢e.,) Al
x|log | ¢, , +——L(x-x_,)|-log c, , |—— L il X=X,
|: ge( i—1 Al ( t—l)) ge l—1:| 2Al Cl- _ Ciil ( t—l)
1(e._ —2¢ +€ Al)? —cC
5 (=25 2 L) (4D 2 |:_20i1 (x—x_)+ i (x—x,, )’ :| +6,,
2 2(Al) (c,—c.y) Al
Al , 1 1 )
=——|&.(c,—c ) + 5(381'71 —4g+e,)(c—c e, + E(gi—l —2¢,+¢€,,)c, |X
(Ci - ci—l) ‘ (E11)
1
X |:10ge (Ci—] + %(x — X )) —log, ¢, :|
_ 38,‘—1 - 48,' + EHI (.X _ 'xi—l)+ Lgi-l_gziﬂ{_zci—l (_x — xi_1)+ ﬁ(x _ xi_l)Z j| + 0[_1
2(ci - ci—l) 4(Ci - c,'_l) Al

12
(x_, <x<Xx,)

-1 —

In equation (E11), the two terms{/,,/,} can be simplified through grouping terms as follows in
equation (E12) and (E13):
_ > 1 1 5
Ii=¢€_(c;—c ) + 5(381'—1 —4g +E,)(c—c e, + 5(81'—1 —2¢,+¢€,)c,
2, 3 1, 2 1 2
=| (=) + E(Ci —Ciy)Ciy Eci—l &~ [z(ci —C)Cy t e :Igi + 5[(Ci —Cy)Ciy F e :|€i+1

1

3 3 1 1
= Ci2 —2cc, + Ci2—1 +2CC— _Cz'2—1 + _Ci2—1 &, Q2c,—c e &+ gy,
2 2 2 2
1 (E12)
= 5[(26'[ —Ci)CE —2(2¢, — ¢ )e g + Cici—18i+1]
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3¢ —de +g, L —2€+
( (c.:,_l 8: gH—l)(x xl 1)+81—1 8[ 81+1{ 2Cl l(x xl 1)+( )( _xl ]) ]

S YO T 4 —c, )
1
= 20 —c. % [(_381‘71 +4eg —¢€,)(¢c;—¢, )— (& ,—2¢€ +¢€,,)c, ](x —X.)

g —2¢e+¢€,, (x—x._)
4(c —Ciy) Al

{[ =3¢, — ¢ )—¢y ]gi—l + [4(Ci —C)t2¢, ]gi + [_(Ci —Cy)— ¢y ]8i+1 }(x —X)

2c;—c;,y)
€ —2&+¢&, (x—x)
4(c,—c,,) Al
3 1
- 2(c,—c.,)

—Je +€ —x. )
[2c., —3c)e, +2Q2¢, ¢, )e, —ce,,, |(x—x, )+£—1 €+E, (x—x_,)
4(c,—c, ) Al

(E13)

Substitutions of equations (E12) and (E13) into equation (E11) yields equation (E14):

Al c.—C,_
0(x)= m[(zci —¢  Nc&  —2¢ &)+ € 1+1]|:10g (ci—l +’Tl’l(x—xi_])]—loge Ci—l:|

1
o o
2(¢c;—c,))

g ,—2&+¢&, (x—x._) o
4(c;,—c, ) Al

[(2c.,—3¢)e . +2(2¢,— ¢, )E, — e, [(x—x,,)

i-1
(x_, <x<Xx,) (E14)

At the strain-sensing station x,, one can write x,—x, , =Al, and equation (E14) gives the slope,

0.[=0(x,)], at the strain-sensing station, x,, as equation (E15):

Al c
0, = m[(zcz‘ —c¢  Ne€ —2¢,&)+cc m]loge?il
Al £, —2€ +E,
+—2[(2Ci =3¢,)e,  +2(2¢c;—c, )€ — l+l]+u+9i_l (E15)
2(6,' - Ci_1) 4(Ci - ci—l)

I3

(i=12,3,...,n)

The term 7, in equation (E15) can be simplified as follows in equation (E16):
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Al 2e. + €.

I,=————|Q2c,,-3c,)e, +22c;,—c, ) - +—l+1Al
3 2(Ci _Ci—l)2 [( i- ) i-1 ( i- l) , l+l] 4(Ci _ l_l)
Al 1
=————2¢,-3¢c,+=(c;—c.,) &, +]|2Qc,— ¢, ) (¢, —c.)]e,
2( ;G ])2 {|: Cint Ci 2(C’ c’_l):| i-1 [ ( G cl—l) (Cl Cz—l)] i
1 (E16)
-G E(Ci - Ci—l) €
Al
- _—4(C,~ ey [(5¢, =3¢, )e, —2(c, —c, ) + (¢, + ¢, e, |

In view of equation (E16), equation (E15) takes on the final form as equation (E17):

Al

Cl
0. :m[(zci_ci—l)(cigz 1 2¢,€) e E l+|]10g(’_

i-1

Al [(5¢,—3c,)e, —2(3c,—c, e, +(c;+ ¢, e

B 4(c;—c,, )2

|+6,, (E17)

i+1

(i=12,3,...,n)

Equation (E17) is the nonlinear part of equation (19a) in the text.

Improved Curved Deflection Equations

The curved deflection, y(x), of the nonuniform embedded beam in the domain x,_ | <x < x, between
the two adjacent strain-sensing stations, {x, ,,x;}, can be expressed as equation (E18) [see eq. (17)]:

i-1°

51 c(X) (E18)

y(x)= J. [J‘x E(X)dx+el I}dx+yl | JX] O(x)dx+y. ., ; (x,<x<x)

0(x)
Substitution of equation (E14) into equation (E18) yields equation (E19):

- Al
y(x)zicf[(zci_ci—l)(cigl 1 —2¢,€) e € z+1]><

2(c, —
XJ‘;_[loge(cil +5 AIC’ L(x—x,_ ,)) log, c”}dx

i i-1
[(ZCH - 3ci )gi—l + 2(2Ci —Ci )81' C€i ]_[ (x Xio I)dx

X (E19)

T2
2(c;—c,,)
£, ,—2¢€ +¢,

4(Ci —Ci 1)

i+1 J' (x Yio 1) d)c+J.):_l 0, dx+y,,

Carrying out the integration of equation (E19), one obtains equation (E20) (ref. 21):
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Al

y(x)= m{[@ci -, )NCE_ —2¢c, &)+ €y ] X
Al ¢, — ¢, Cc,—C.
X ¢ +—/—=(x—x)log | c_, +——“L(x—x
|:Cl~ _ Ci_l <( i—1 Al ( l)) ge( i—1 Al ( l))
c

— %;l—l(x — .X,-) —C 10g Cia > —(x— Xy ) loge Cioy :|}

(E20)

+——|[Qc_, —3c)e_ +2Q2c,—c. e —ce,, |(x—x,)°
4(Ci—ci_1)2 [( - l) i ( ! ’_1) i i l+l]( z)

LET 2¢.+¢€,, (x—x,)°
12(c;, —c, ) Al

+(x=x)0_, +y,,

(x_, <x<x)

i-1 =

At the strain-sensing station, x; , one can writex; —x, , = A/, and equation (E20) gives the curved
deflection, y,[= y(x;,)], at the strain-sensing station, x; , as follows in equation (E21):

y, = %{[QQ —c,  Ncg_ —2c,_E)+ e €, ] X
X [cl. log,c,—(c,—c,,)—c,_ log,c,,—(c;—c;)]og,c,, ]}
L22|:(20i—1 —3¢)€, +2(2¢; — ¢ )€ — g + l(gi—l —2¢+€,,)(c;—c ):|
4(c;—cy) 3
+y., +(ADB,_,
(Al)?

= m[(zci —Ci )(cigi—l - 2ci—1£i)+ CiCii€in ][Ci (loge ¢ — loge Ciy ) - (Ci —Ci )]

2
+L2 (ZCi1 -3¢, +&—£)€i1 +(4Ci —2¢, _ZC,- +%Ciljgi +(_Ci +&_£jgi+1
4(c,—c. ) 3 3 3 3 39

1

+y,.,+(ADB._,
(i=12,3,...,n) (E21)

After grouping terms, equation (E21) becomes equation (E22):

_ (Al)2 c,
Yi= m[(zci —c)eE —2¢, &)+ Cici—lgiﬂ] ¢ log, j —(c;—¢)
2
_#[(&1 —5¢, )€, —2(5¢, = 26, )&, +(2€, 4+ €, )€y |+ Iy +(ADB, (E22)
¢ —Ciy

(i=1,2,3,...,n)

Equation (E22) is the nonuniform part of equation (19b) in the text.
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APPENDIX F
DERIVATIONS OF IMPROVED CURVED DEFLECTION EQUATIONS
IN SUMMATION FORMS FOR NONUNIFORM EMBEDDED BEAMS
Appendix F presents the mathematical derivations of the nonuniform parts of the summation curved

deflection equation (19c). The Improved slope angle equation (E17) and Improved curved deflection
equation (E22) are duplicated below as equations (F1) and (F2) respectively:

Al .
=—|(2¢, ¢, cE  —2c €)+cc £ |log —
! 2(Ci—C,-_1)3 [( i 1—1)( i“i-1 i-1 1) ivi-1 ,+1] ge .
Al )
S T [(5¢, =3¢, —2(c, — ¢, )e, +(c, + ¢, e, |+ 6.,
i i—1
(i=1,2,3,...,n)
_ (Al)? N
i = —2(0,- ey [(ZCi —c, g —2¢, &)+ cicl.flem] ¢, log, Z —(¢;—cy)
Al)? ~ (F2)
o i _)C 5 [(8¢c,—5¢, ), —2(5¢,—2¢, ), +(2¢, + ¢, )€, |+ 3,y +(AD,
i i—1

(i=12,3,...,n)

Equations (F1) and (F2) can be combined into a single deflection equation in dual summation form as
follows. Writing out equation (F2) for different indices, i, and making use of the indicial relationships
expressed in equations (F1) and (F2), one obtains equations (F3) and (F4):

Fori=1:
_ (Al)? c
y, = m[@cl —€y)CE —2(2¢, —¢y)c € + clcoez] ¢, log, : —(¢,—¢,) (F3)
(Al)? _
——————[8c, = 5¢y)€, —2(5¢, —2¢, )€, + (2¢, + ¢y )E, |+ ¥,y + (ADO,
12(¢c, —¢,)
Fori=2:
_ Al)? c
L= %[(262 —c))e, €, —2(2¢, —¢))c,E, + c2c183] c,log,~2—(c,—¢c,)
2(c, —¢) e
(Al _
- m[(Scz —5¢,)€,—2(5¢, = 2¢))g, + (2¢, + ¢ )83] +y, +(ADB,
2 1
Al)? c
= %[(202 —c))cE —2(2¢, —¢,)c,E, + czc183] c,log,~—(c,—¢,)
2(c, —¢;) o
Al)?
_ ﬁ[(gc2 —5¢,)8,—2(5¢, 26,06, + (20, +¢,)8; ]
2 1
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2
%[(ZQ =)0 € —2(2¢; — ¢y)Co € + clcoez] ¢ log, S (c,—¢,)
. 2(c, —¢y) Co
Al)? R
A [ (8¢, —5¢,)e, —2(5¢, —2¢, )€, + (2¢, + ¢ )€, |+ 3, + (A,
12(c, —¢,)
3
2
(AD) - [(2c1 —¢,)C,E) —2(2¢, = ¢,)Cy€, +¢,CyE, ]10ge o
N 2(c,—¢,) C,
Al)?
Y —[(5¢,=3¢,)e, =23, — ¢, )&, + (¢, + ¢y e, |+ (ADB,
4(c,—¢,)

(AD6, (F4)

After grouping terms, equation (F4) becomes equations (F5) and (F6):

Al)? c
%[(262 —¢)0,€ —2(2¢, —¢,)c,E, + czc183] ¢, log,—2—(c,—¢,)
- 2(c,—¢,) C
Al
_12(f:——)c)2[(8€2 —5¢,)€, —2(5¢, —2¢))E, +(2c, + ¢, )83]
2 1
Al)? c
2(7)4[(26'1 —Cy)CE —2(2¢, — ¢, )C €, + clcoe2][c] log, 4 — (¢, — CO):|
N (¢, —¢) o)
Al)? _
—ﬁ[(gc1 = 5¢,)8, — 2(5¢, = 2¢,)€, + (2¢, + ¢, )&, |+ T (F5)
1 0
(Aly?

73[(201 —¢y)C,E) —2(2¢, — €y )C,E, + €,CoE, ] log, 9
2(c;—¢y) C
+(2-1) +2(A6,

_m[(Scl —3¢,)€, —2(3c, —¢,)E, + (¢ +c0)82]
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For /1=3:

2
Vs = s 4 [(263 = )38, = 2(2¢; = ¢,)C, 85+ 030284] c;log, = (c;—¢,)
2(cy—c,) ,
ALy’ R
-5 (Al) - [(8c3 —5¢,)e,—2(5¢;—2¢,)e; + (2c, + c2)g4]+ y, +(AD6,
(c;—c,)
Al)? c
ﬁ[(zg = 03)058, = 2(205 =€) + 30,8, ]| ¢ log, é —(¢; - Cz)l
(AD?
_ .- c2)2 [(SC3 -5¢,)e, —2(5¢; —2¢,)e; + (2c5 + 02)54]
A 2
— 4 [(202 —€)CE =226, =€),y + 620183] ¢, log, 2 (c,—¢)
2(c,—¢y) c,
(Al)?
—m[(&z —5¢,)€ —2(5¢, —2¢))€, + (2¢, +¢))E; |
A 2
20 4 [(2C1 — €€y —2(2¢, — ¢y )c€ + C1€0£2]|:Cl log, Si (¢,— Co):|
2(¢,—¢,) )
@)’ )
_ 2t~ 7 [(SC1 =5¢,)€, —2(5¢,—2¢,)E, +(2¢, +¢,)E, ] +9,
Aly’ c
(&) 3 [(2C1 - CO)CIEO - 2(2C1 - 60)0081 + clcoez]log—l
2(¢, —¢,) ¢,
+(2-1) A
- 4(c,—¢, )2 [(SCI —3¢)€,=2(¢; = ¢,)& (¢ +¢ )82]
+2(A1)6,
»
(AL .
e oyl 26 ma)ee ~226 —a)e +aaeJlog,
(A’
_m[(502 —3c)€, —2(3¢, — ¢))&, + (¢, + ¢, |+
+
(A1)’

2(c,—¢,)
@
4(c, — ¢, )?

c
3 [(26, — €y )C,Ey —2(2¢, — ¢y )CyE, + €,CE, ]loge -+

[(5¢, = 3¢,)e, —2(3¢, — ¢ )€, + (¢, +¢)E, |+ (ADB,

0

(ahe,

After grouping terms, equation (F6) becomes equation (F7):
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(Al c
—)4[(2c3 —0,)05E, —2(2¢, — €,)0,8; + ¢;0,8, || ¢5log, =2 —(¢;—¢,)
2(c;—c¢,) c

2

@y
12(c, —¢,)’
(AD)?

2(c, - C1)4

+
_ @yt
12(c, - ¢,)
2
%[(ZQ —¢,)C,E —2(2¢c, —¢y)c € + clcosz] ¢, log, S (c,—¢y)
2(c,—¢,) C

0

(a0 +5, 1)
_m[(gcl =5¢,)€,—2(5¢,—2¢,)e, +(2¢, + 00)82]
176G
(AD)? )
W[(Zcz — )€ =22, —¢))cE, + C2c133]]0g€ Gy

¢
+(3-2)
(AD?

- 4(c, - cl)2
(Al)?
2(c, —CO)3
@

4(c,—c,)

[(8c, —5¢,)e, —2(5¢;—2¢,)€; + (2¢; +¢,)E, |

[(2c2 —c,)C€ —2(2¢c, —c))ciE, + 02c]£3]

&) loge 2 - (C2 —C )]

¢

[(8c, —5¢))e, = 2(5¢, —2¢))e, + (2c, + ¢))g; |

[(5¢, = 3c)e —2(3c, —¢))g, + (¢, + ¢))g; |

[(2c1 —¢y)C, €y —2(2¢, —¢y)Cy € +C,CE, ]loge a

¢

"L+ 3(AD8,
[(Scl —3¢y)€y —2(3¢, —¢y)E, + (¢, + ¢, )82]

+(3-D

Observing the indicial behavior, equation (F7) can be generalized for index i, and the deflection, y., can

be expressed in a generalized form with two summations (with different summation limits) as
equation (F8):

(Al) ¢
i ﬁ[(chi —c, )€ —2¢; &)+ cici €, ] ¢;log,———(c;—c;,)
5. = (c;=ci) Cjn 5
= (Al '
_m[(scj —5¢,)€,, —2(5¢; = 2¢,,)€; +(2¢; +¢,,)E,,, |

Contribution from deflection terms
(Al ,
1 m[(zcj —c)eg =20, E)tec g, Jlog, C_]l
. . J J= J= .
+> (- )) +()(ADB,
j=1

—%[(56 —3c. )e., —2@Bc,—c. e +(c,+c._,)E ]
, DE, —cC.)E; +C. )E
4(Cj _ Cj_l )2 J J J J J J J J J

(F8)

Contributions from slope terms

(i=12,3,...,n)
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Equation (F8) is the nonuniform part of equation (19c) in the text. A set of three equations {(F1), (F2),
and (F8)} is then called the Improved Curved Displacement Transfer Functions for the nonuniform
embedded beams.
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APPENDIX G
DERIVATIONS OF IMPROVED SLOPE ANGLE AND CURVED
DEFLECTION EQUATIONS IN RECURSIVE FORMS FOR
UNIFORM BEAMS

Appendix G presents the details of integrations of the slope angle equation (15) and the curved
deflection equation (17) for the uniform beams based on piecewise nonlinear strain representations to
obtain uniform parts of equations (19a) and (19b).

Slope Equation

For the uniform embedded beam with constant depth factor, c(x)=c, the slope angle equation (15)

for the domain x,_, <x<x, between the two adjacent strain-sensing stations, {x, ,,x,}, becomes
equation (G1):

E(x
0(x)= j &) gy k+6., o, Sxsx) (G1)
%,—/ Slope
Slope increment at x;_

The nonlinear representation of strain, £(x), in the domain x,_, <x <x, between the two adjacent
strain-sensing stations, {x, ,,x,}, described by equation (13a), is duplicated below as equation (G2):

e, —4¢ +¢ -, —2€ +E,
S(X) — giil _ 81—] 81 81+1 (X—Xi71)+ 81—1 81 . £1+I (X—Xi71)2
2AI 2(Al) (G2)

(x_, <x<x;)

In view of equation (G2), equation (G1) can be integrated to yield equation (G3) (ref. 19):

1 g 3¢, —4¢e +e, g ,—2¢+€,
G(X)ZZL,_I[&“_ ol 1(x_x“)+W(x_xi‘)z}dﬁe”
1 3¢, —4e +e,, -2¢+¢,, ; (G3)
=—le (x—x_,)— —iEL T i A
c[ )= T A T ) }

(x_, <x<ux)

At the strain-sensing station, x,, one can write x, —x, , = Al, and equation (G3) yields the slope angle,
0.[=0(x,)], at the strain-sensing station, x,, as equation (G4):

Al 3¢, —4¢e +€,, £ ,—2¢ +E,,
£, — +

0, =—
c 4 6

}"‘9,-_1 ; (i=12,3,...,n) (G4)

After grouping terms, equation (G4) takes on the following final form as equation (G5):
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Al
6,= (56, +88,=£.)+6, 1 (i=123...n) (GS)
c

1

Equation (G5) is the uniform part of equation (19a) in the text.

Curved Deflection Equations

For the uniform embedded beam, [c(x)=c], the curved deflection, y(x), in the small domain
< x < x; between the two adjacent strain-sensing stations, {x,

l 1=

the slope equation (G3) [see equation (C6)] as equation (G6):

X, }, can be obtained by integrating

i-1°

y(x):J':l[r S(X)dx+9, l}dx+yl J.;IO(x)dx+§i_l ;o (x, <x<x) (G6)

0(x)

Substituting equation (G3) into equation (G6), and carrying out integrations, one obtains equation
(G7) (ref. 21):

_ I px 3¢, —4e +¢€, -2¢ +¢,, 3
X)=— E_(X—X, P e E—h v
3(0) ij”[ (8 ) = T (e ) R - ,1)}
+J*’ 0 dx+y,,
1| €, ) —4¢, +e,, £ ,—2¢ +¢€,, 4 (©7)
=—| —(x—x_) ~ M= x,) + = (- x )
el 2 12Al 24(Al)

+(x—x_)0 +
(x_, Sx<x,)

At the strain-sensing station, x,, one can write x,—x,  =Al, and equation (G7) gives the curved
deflection, y.[= y(x;)] , at the strain-sensing station, x,, as equation (G8):

i

(A1 [ 11_3&1—48#%+8f1‘28f+8f+1}+9i_1+<Al>0i_1

c 2 12 24 (G8)
(i=1,2,3,...,n)
After grouping terms, equation (G8) takes on the final form as equation (G9):
(Al _ ) .
v, = o ——(7¢,_,+6¢€,—¢€,)+y._, +(ADO,_, ;o (@=12,3,...,n) (G9)
c

Equation (G9) is the uniform part of equation (19b) in the text.
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APPENDIX H
DERIVATIONS OF THE IMPROVED CURVED DEFLECTION
EQUATION IN SUMMATION FORM FOR UNIFORM EMBEDDED
BEAMS
Appendix H is to derive the final summation form of the curved deflection equation for the uniform

embedded beams using nonlinear strain representations. Equations (G5) and (G9) are duplicated below as
equations (H1) and (H2), respectively.

[
9,- = _(585—1 + 881’ - ei+1)+95—1 ; (i = 1’2’3""’”) (Hl)
12¢
y; = (zAi) 6, —E,)+Y, +H(ADE, 5 (i=123,..n) (H2)

Equations (H1) and (H2) can be combined into a single deflection equation in summation forms as
follows. Writing out equation (H2) for different indices, i, and making use of the indicial relationships
expressed in equations (H1) and (H2), one obtains equations (H3) and (H4):

Fori=1:
_ (A _ H3
5= L 76, + 66, - £,)+ 5, +(ADB, 3
24c¢
Fori=2:
_ Al)’ _
5= 2 7, 466, ~ )+, +(AD8,
24c¢
(Aly’ (ALY _
= (7e, +6¢€, — &) +——(Tg, +6¢,—¢€,)+y, +(A)B, (H4)
24c 24c
i
A
( l) +8¢,—¢&,)+(ADB,
(AD6,
After grouping terms, equation (H4) becomes equations (H5) and (H6):
- (Al) (Al) (Al)
v, = dc ——(7¢,+6¢, +6¢€, ¢, +8¢,-¢,) (HS)
+ ¥, +2(Al)6,
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Fori = 3:

(Al _ Al
Y, = ( ) +6e,—€,)+y,+(ADB, = (24) (7€, +6€,—¢€,)+
Al AlY? Al _
4! ) +6e, 83)+%(780+681 € ( ) +8g,—£,)+ 3, +2(AD6,
C

»

2 H6
(Al) + 8¢, — 83)+%(580+88] —&,)+ (A6, (H6)
c

(AD6,

After grouping terms, equation (H6) becomes equation (H7):

(Al Al)? Al)?
V3= ( ) ) %(781+682_83)+%(780+681_82)

(Al ~ NG
2c 1 7 12

(H7)

1 _82)"'?0 + 3(Al)00

Observing the indicial behavior, equation (H7) can be generalized for index, i, and the curved
deflection, y,, can be expressed in a generalized form with two summations (with different summation

limits) as equation (H8):

(zAi) Z<78,1+6e )52 2(1 INSE1+88; =€)+ (D(ADG,

Contributions from deflection terms Contributions from slope terms

(i=12,3,...,n)

(H8)

which is the uniform part of equation (19c¢) in the text. A set of three equations {(H1), (H2), and (H8)} are
called the Improved Curved Displacement Transfer Functions for the uniform embedded beams.
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APPENDIX |
SUMMARY DATA OF LINEAR AND NONLINEAR DEFORMATION
ANALYSES OF THE TAPERED CANTILEVER TUBULAR BEAM

The complete set of the strain and deflection data generated by Nastran linear and nonlinear analysis
of the tapered cantilever tubular beam are listed in tables 11-114 for different values of beam-tip load, P.
Tables 11—-17 are for linear cases, and tables 1-8—114 are for the nonlinear cases. In the last columns of
tables 11—114, theoretically predicted deflection data are listed for comparisons.

Linear Analysis

In the Nastran linear analysis, the outputs give only vertical deflections, y,, and zero axial
displacements (that is, u; =0) (fig 6a). Note from tables 11-17 that for linear cases, the lower and the

upper surface strains at the same strain-sensing cross section have the same magnitudes. In the last
columns of tables 1117, the data of Shifted (vertical) deflection, y,, were calculated from the Shifted

Displacement Transfer Functions [eq. (6b)] using the known depth factors, c,(=h,/2), and lower surface
strains, ¢;, listed in tables 11-17.

Table I11. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear

analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,
¢;,(=h,/2), and Nastran linear lower surface strains, &, ; P=50 Ib at the beam tip.

_ . g, ,in/in €, ,in/in Y, ,in Y, ,in
l ¢ ,m Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)
0 4.0000 -0.00124 0.00124 0.000 0.000
1 3.8500 -0.00127 0.00127 0.036 0.036
2 3.7000 -0.00130 0.00130 0.146 0.145
3 3.5500 -0.00134 0.00134 0.335 0.335
4 3.4000 -0.00137 0.00137 0.609 0.608
5 3.2500 -0.00141 0.00141 0.973 0.973
6 3.1000 -0.00144 0.00144 1.435 1.435
7 2.9500 -0.00148 0.00148 2.002 2.002
8 2.8000 -0.00152 0.00152 2.681 2.682
9 2.6500 -0.00155 0.00155 3.482 3484
10 2.5000 -0.00158 0.00158 4415 4.418
11 2.3500 -0.00161 0.00161 5.490 5.494
12 2.2000 -0.00164 0.00164 6.719 6.724
13 2.0500 -0.00165 0.00165 8.116 8.122
14 1.9000 -0.00165 0.00165 9.693 9.701
15 1.7500 -0.00162 0.00162 11.464 11.475
16 1.6000 -0.00155 0.00155 13.443 13.457
17 1.4500 -0.00141 0.00141 15.637 15.655
18 1.3000 -0.00117 0.00117 18.048 18.069
19 1.1500 -0.00075 0.00075 20.658 20.679
20 1.0000 0.00000 0.00000 23.406* 23.424*

*Extremely close
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Table 12. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear

analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,
¢;,(=h,/2), and Nastran linear lower surface strains, €, ; P=100 Ib at the beam tip.

_ . €, ,in/in g, ,in/in Y, ,in y;,in
l ¢, 1n Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)
0 4.0000 -0.00248 0.00248 0.000 0.000
1 3.8500 -0.00254 0.00254 0.072 0.071
2 3.7000 -0.00260 0.00260 0.292 0.291
3 3.5500 -0.00267 0.00267 0.670 0.669
4 3.4000 -0.00274 0.00274 1.218 1.216
5 3.2500 -0.00281 0.00281 1.947 1.945
6 3.1000 -0.00289 0.00289 2.871 2.868
7 2.9500 -0.00296 0.00296 4.004 4.002
8 2.8000 -0.00303 0.00303 5.362 5.361
9 2.6500 -0.00310 0.00310 6.964 6.964
10 2.5000 -0.00317 0.00317 8.830 8.830
11 2.3500 -0.00323 0.00323 10.980 10.981
12 2.2000 -0.00327 0.00327 13.439 13.442
13 2.0500 -0.00330 0.00330 16.232 16.238
14 1.9000 -0.00329 0.00329 19.386 19.395
15 1.7500 -0.00323 0.00323 22.929 22.941
16 1.6000 -0.00310 0.00310 26.886 26.901
17 1.4500 -0.00283 0.00283 31.274 31.294
18 1.3000 -0.00234 0.00234 36.097 36.120
19 1.1500 -0.00150 0.00150 41.316 41.340
20 1.0000 0.00000 0.00000 46.811* 46.828*

*Extremely close
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Table 13. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear

analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,
¢;,(=h,/2), and Nastran linear lower surface strains, &, ; P=200 Ib at the beam tip.

_ . €, ,in/in g, ,in/in Y, ,in y;,in
l ¢, 1n Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)
0 4.0000 -0.00495 0.00495 0.000 0.000
1 3.8500 -0.00508 0.00508 0.143 0.142
2 3.7000 -0.00521 0.00521 0.584 0.581
3 3.5500 -0.00534 0.00534 1.340 1.338
4 3.4000 -0.00548 0.00548 2.436 2.433
5 3.2500 -0.00563 0.00563 3.894 3.890
6 3.1000 -0.00577 0.00577 5.741 5.738
7 2.9500 -0.00592 0.00592 8.007 8.005
8 2.8000 -0.00606 0.00606 10.725 10.724
9 2.6500 -0.00620 0.00620 13.929 13.930
10 2.5000 -0.00634 0.00634 17.659 17.662
11 2.3500 -0.00646 0.00646 21.960 21.966
12 2.2000 -0.00655 0.00655 26.877 26.888
13 2.0500 -0.00660 0.00660 32.463 32.480
14 1.9000 -0.00658 0.00658 38.772 38.795
15 1.7500 -0.00647 0.00647 45.858 45.889
16 1.6000 -0.00619 0.00619 53.771 53.811
17 1.4500 -0.00565 0.00565 62.549 62.599
18 1.3000 -0.00469 0.00469 72.193 72.252
19 1.1500 -0.00300 0.00300 82.631 82.692
20 1.0000 0.00000 0.00000 93.623* 93.669*

*Extremely close
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Table 14. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear
analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,

¢;,(=h,/2), and Nastran linear lower surface strains, &, ; P=300 Ib at the beam tip.

_ . €, ,in/in g, ,in/in Y, ,in y;,in
l ¢, 1n Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)

0 4.0000 -0.00743 0.00743 0.000 0.000

1 3.8500 -0.00762 0.00762 0.215 0.213
2 3.7000 -0.00781 0.00781 0.875 0.872
3 3.5500 -0.00801 0.00801 2.011 2.007
4 3.4000 -0.00822 0.00822 3.654 3.649
5 3.2500 -0.00844 0.00844 5.841 5.835
6 3.1000 -0.00866 0.00866 8.612 8.607
7 2.9500 -0.00888 0.00888 12011 12.007
8 2.8000 -0.00909 0.00909 16.087 16.085
9 2.6500 -0.00931 0.00931 20.893 20.893
10 2.5000 -0.00951 0.00951 26.489 26.493
11 2.3500 -0.00968 0.00968 32.940 32.949
12 2.2000 -0.00982 0.00982 40.316 40.332
13 2.0500 -0.00990 0.00990 48.695 48.719
14 1.9000 -0.00988 0.00988 58.158 58.191
15 1.7500 -0.00970 0.00970 68.787 68.832
16 1.6000 -0.00929 0.00929 80.657 80.716
17 1.4500 -0.00848 0.00848 93.823 93.897
18 1.3000 -0.00703 0.00703 108.290 108.378
19 1.1500 -0.00449 0.00449 123.947 124.039
20 1.0000 0.00000 0.00000 140.434% 140.502*

*Extremely close
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Table 15. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear

analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,
¢;,(=h,/2), and Nastran linear lower surface strains, &, ; P=400 Ib at the beam tip.

_ . €, ,in/in g, ,in/in Y, ,in y;,in
l ¢, 1n Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)
0 4.0000 -0.00990 0.00990 0.000 0.000
1 3.8500 -0.01015 0.01015 0.287 0.284
2 3.7000 -0.01042 0.01042 1.167 1.162
3 3.5500 -0.01069 0.01069 2.681 2.674
4 3.4000 -0.01096 0.01096 4.872 4.864
5 3.2500 -0.01125 0.01125 7.788 7.780
6 3.1000 -0.01154 0.01154 11.483 11.475
7 2.9500 -0.01183 0.01183 16.015 16.008
8 2.8000 -0.01213 0.01213 21.449 21.444
9 2.6500 -0.01241 0.01241 27.858 27.855
10 2.5000 -0.01268 0.01268 35319 35.320
11 2.3500 -0.01291 0.01291 43919 43.927
12 2.2000 -0.01309 0.01309 53.755 53.771
13 2.0500 -0.01320 0.01320 64.927 64.953
14 1.9000 -0.01317 0.01317 77.544 77.582
15 1.7500 -0.01293 0.01293 91.715 91.769
16 1.6000 -0.01238 0.01238 107.542 107.613
17 1.4500 -0.01130 0.01130 125.097 125.185
18 1.3000 -0.00937 0.00937 144.387 144.489
19 1.1500 -0.00599 0.00599 165.263 165.367
20 1.0000 0.00000 0.00000 187.245% 187.314%

*Extremely close
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Table 16. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear
analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,

¢,(=h,/2), and Nastran linear lower surface strains, &, ; P=500 Ib at the beam tip.

_ . €, ,in/in g, ,in/in Y, ,in y;,in
l ¢, 1n Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)

0 4.0000 -0.01238 0.01238 0.000 0.000

1 3.8500 -0.01269 0.01269 0.359 0.356
2 3.7000 -0.01302 0.01302 1.459 1.453
3 3.5500 -0.01336 0.01336 3.351 3.343
4 3.4000 -0.01371 0.01371 6.089 6.080
5 3.2500 -0.01406 0.01406 9.735 9.725
6 3.1000 -0.01443 0.01443 14.353 14.344
7 2.9500 -0.01479 0.01479 20.019 20.011
8 2.8000 -0.01516 0.01516 26.812 26.807
9 2.6500 -0.01551 0.01551 34.822 34.822
10 2.5000 -0.01584 0.01584 44.148 44.154
11 2.3500 -0.01614 0.01614 54.899 54913
12 2.2000 -0.01637 0.01637 67.193 67.217
13 2.0500 -0.01650 0.01650 81.158 81.195
14 1.9000 -0.01646 0.01646 96.930 96.982
15 1.7500 -0.01617 0.01617 114.644 114.716
16 1.6000 -0.01548 0.01548 134.428 134.522
17 1.4500 -0.01413 0.01413 156.372 156.489
18 1.3000 -0.01172 0.01172 180.483 180.621
19 1.1500 -0.00749 0.00749 206.579 206.723
20 1.0000 0.00000 0.00000 234.057* 234.161%

*Extremely close
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Table 17. Vertical deflections, y,, of the tapered cantilever tubular beam calculated from Nastran linear

analysis and from Shifted Displacement Transfer Functions [eq. (6b)] using the known depth factors,
¢;,(=h,/2), and Nastran linear lower surface strains, &, ; P=600 Ib at the beam tip.

_ . €, ,in/in g, ,in/in Y, ,in y;,in
l ¢, 1n Nastran-linear upper Nastran-linear lower Nastran-linear Shifted DTF
surface strain surface strain vertical deflection Eq. (6b)

0 4.0000 -0.01485 0.01485 0.000 0.000

1 3.8500 -0.01523 0.01523 0.430 0.427
2 3.7000 -0.01562 0.01562 1.751 1.744
3 3.5500 -0.01603 0.01603 4.021 4011
4 3.4000 -0.01645 0.01645 7.307 7.296
5 3.2500 -0.01688 0.01688 11.682 11.669
6 3.1000 -0.01731 0.01731 17.224 17.212
7 2.9500 -0.01775 0.01775 24.022 24.012
8 2.8000 -0.01819 0.01819 32.174 32.166
9 2.6500 -0.01861 0.01861 41.786 41.784
10 2.5000 -0.01901 0.01901 52.978 52.982
11 2.3500 -0.01937 0.01937 65.879 65.891
12 2.2000 -0.01964 0.01964 80.632 80.656
13 2.0500 -0.01979 0.01979 97.390 97.429
14 1.9000 -0.01975 0.01975 116.316 116.372
15 1.7500 -0.01940 0.01940 137.573 137.651
16 1.6000 -0.01857 0.01857 161.313 161.415
17 1.4500 -0.01696 0.01696 187.646 187.773
18 1.3000 -0.01406 0.01406 216.580 216.729
19 1.1500 -0.00899 0.00899 247.894 248.047
20 1.0000 0.00000 0.00000 280.868* 280.970%*

*Extremely close; beam-tip deflection = 94% of 300-in span.

Nonlinear Analysis

Tables 18—114 list the strain and deflection outputs of Nastran nonlinear analysis. Nastran nonlinear

deflection outputs have both axial and vertical displacement, {u,,y,} (fig 6b). Therefore, Nastran curved
deflections, y, were calculated from equation (20). Note also from tables 18—114 that the magnitudes of

lower surface strains are slightly larger than the magnitudes of the associated upper surface strains
because of the curved-beam effect, inducing slight axial strain components under nonlinear bending.

In the last columns of Tables 18—114, the data of curved deflection, y, were calculated from the

Curved Displacement Transfer Functions [eq. (18b)] using the known depth factors, c¢,(= A, /2), and the
true bending strains, (€, —€;)/2 [eq. (23)], for eliminating axial strains induced by curved-beam effect in
nonlinear bending.
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Table 18. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= &, /2), and the true bending strains, (g, —&,)/2; P=50 Ib at the beam tip.

. g, ,in/in g, ,in/in U, in y, . in Yy, ,in 3, .in
! G-t} X, 1n nonlil\ilfga:lpper nonlIi\IrfleS;ﬁgwer Nastran Nastran Nas::rlelgcctiuorrred Curved DTF
surface strain surface strain x-disp. y-disp. Eq. (20) Eq. (18b)
0 4.00 0.0 -0.00123 0.00123 0.000 0.000 0.000 0.000
1 3.85 15.0 -0.00126 0.00126 0.000 0.036 0.036 0.035
2 3.70 30.0 -0.00130 0.00130 0.000 0.145 0.145 0.144
3 3.55 450 -0.00133 0.00133 0.002 0.333 0.333 0.332
4 340 60.0 -0.00136 0.00136 0.004 0.606 0.606 0.605
5 3.25 75.0 -0.00140 0.00140 0.008 0.969 0.969 0.967
6 3.10 90.0 -0.00143 0.00143 0.016 1.428 1.428 1.427
7 295 |1 105.0 -0.00147 0.00147 0.026 1.991 1.991 1.990
8 2.80 | 120.0 -0.00150 0.00151 0.041 2.666 2.666 2.666
9 2.65 | 1350 -0.00154 0.00154 0.062 3.462 3.463 3.462
10 2.50 | 150.0 -0.00157 0.00157 0.091 4.388 4.389 4.390
11 235 1 165.0 -0.00160 0.00160 0.129 5.455 5.457 5.458
12 220 | 180.0 -0.00162 0.00162 0.179 6.675 6.679 6.680
13 205 | 1950 -0.00163 0.00163 0.243 8.059 8.064 8.068
14 1.90 | 210.0 -0.00162 0.00163 0.324 9.621 9.629 9.634
15 1.75 | 2250 -0.00159 0.00160 0.427 11.374 11.386 11.393
16 1.60 | 240.0 -0.00152 0.00153 0.555 13.330 13.347 13.356
17 145 | 2550 -0.00139 0.00140 0.712 15.497 15.521 15.532
18 1.30 | 270.0 -0.00115 0.00116 0.902 17.875 17.909 17.921
19 1.15 | 285.0 -0.00073 0.00074 1.124 20.445 20.491 20.504
20 1.00 | 300.0 0.00001 0.00001 1.369 23.150 23.210%* 23.220%*

*Extremely close

70




Table 19. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= k, /2), and the true bending strains, (g, —&,)/2; P=100 Ib at the beam tip.

. g, ,in/in g, ,in/in U, in y, . in Yy, ,in 3, .in
! AR I nonlil\LaeSzflrra;lpper nonlil\LaeSzflrralr(l)wer Nastran Nastran Nacsigfe]‘;lciiuor;ed Curved DTF
surface strain surface strain disp. y-disp. Eq. (20) Eq. (18b)
0 4.00 0.0 -0.00243 0.00243 0.000 0.000 0.000 0.000
1 3.85 150 -0.00249 0.00249 0.000 0.070 0.070 0.070
2 3.70 30.0 -0.00255 0.00255 0.002 0.287 0.287 0.285
3 3.55 450 -0.00262 0.00262 0.006 0.658 0.658 0.656
4 340 60.0 -0.00268 0.00268 0.016 1.195 1.195 1.192
5 3.25 75.0 -0.00275 0.00275 0.033 1910 1910 1.907
6 3.10 90.0 -0.00281 0.00282 0.060 2.814 2.815 2.811
7 295 | 105.0 -0.00288 0.00288 0.101 3.922 3.924 3.920
8 2.80 | 120.0 -0.00294 0.00295 0.160 5.249 5.253 5.249
9 2.65 | 1350 -0.00301 0.00301 0.242 6.812 6.818 6.815
10 2.50 | 150.0 -0.00306 0.00307 0.352 8.628 8.639 8.636
11 235 | 165.0 -0.00311 0.00312 0.498 10.718 10.735 10.733
12 220 | 180.0 -0.00315 0.00316 0.689 13.102 13.129 13.129
13 205 | 1950 -0.00316 0.00317 0.934 15.803 15.844 15.847
14 1.90 | 2100 -0.00314 0.00316 1.245 18.845 18.906 18.912
15 1.75 | 225.0 -0.00307 0.00309 1.637 22.249 22.338 22.350
16 1.60 | 240.0 -0.00293 0.00295 2.122 26.036 26.164 26.182
17 145 | 2550 -0.00266 0.00268 2.717 30.219 30.400 30.425
18 1.30 | 270.0 -0.00219 0.00222 3431 34,793 35.043 35.077
19 1.15 | 285.0 -0.00139 0.00143 4.264 39.722 40.059 40.099
20 1.00 | 300.0 0.00002 0.00002 5.184 44 .896 45.337* 45.374%*

*Extremely close
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Table 110. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= &, /2), and the true bending strains, (g, —&,)/2; P=200 Ib at the beam tip.

g, ,in/in g, ,in/in U, in y, i Y, ,in 3, .in

i Ci» in Xi» in Nastran Nastran Nastran Nastran Nastran c'urved Curved DTF
nonlinear upper | nonlinear lower . . deflection

surface strain surface strain x-disp. y-disp. Eq. (20) Eq. (18b)
0 4.00 0.0 -0.00467 0.00467 0.000 0.000 0.000 0.000
1 3.85 150 -0.00477 0.00477 0.001 0.135 0.135 0.134
2 3770 | 300 -0.00487 0.00488 0.006 0.549 0.549 0.547
3 355 | 450 -0.00498 0.00498 0.023 1.259 1.259 1.256
4 340 | 60.0 -0.00509 0.00509 0.058 2.284 2.285 2.282
5 325 | 750 -0.00519 0.00520 0.120 3.644 3.647 3.644
6 3.10 | 90.0 -0.00530 0.00531 0.219 5.362 5.369 5.366
7 295 | 105.0 | -0.00540 0.00541 0.366 7.462 7475 7473
8 2.80 | 120.0 | -0.00549 0.00551 0.577 9.968 9.993 9.993
9 2.65 | 1350 | -0.00558 0.00560 0.868 12.909 12.953 12.955
10 2.50 | 150.0 | -0.00565 0.00567 1.259 16.313 16.386 16.391
11 235 | 165.0 | -0.00570 0.00573 1.774 20.210 20.326 20.337
12 220 | 180.0 | -0.00572 0.00575 2.440 24.633 24813 24 .831
13 205 | 1950 | -0.00569 0.00574 3.290 29.611 29.883 29.910
14 1.90 | 210.0 | -0.00561 0.00566 4.360 35.175 35.576 35.616
15 1.75 | 225.0 | -0.00543 0.00550 5.690 41.352 41.933 41.988
16 1.60 | 240.0 | -0.00512 0.00520 7.323 48.159 48.983 49.060
17 145 | 255.0 | -0.00460 0.00469 9.298 55.600 56.748 56.853
18 1.30 | 270.0 | -0.00375 0.00386 11.642 63.652 65.221 65.358
19 1.15 | 285.0 | -0.00234 0.00247 14.343 72.241 74.336 74.503
20 1.00 | 300.0 0.00008 0.00008 17.304 81.191 83.903* 84.082*

*Extremely close
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Table 111. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= k, /2), and the true bending strains, (g, —&,)/2; P=300 Ib at the beam tip.

g, ,in/in g, ,in/in U, in y, . in Yy, ,in 3, .in
i Ci» in Xis in Nastran Nastran Nastran Nastran Nastran cprved Curved DTF
nonlinear upper | nonlinear lower . . deflection

surface strain surface strain x-disp. y-disp. Eq. (20) Eq. (18b)
0 4.00 0.0 -0.00665 0.00665 0.000 0.000 0.000 0.000
1 3.85 15.0 -0.00678 0.00678 0.001 0.193 0.193 0.191
2 370 | 30.0 -0.00691 0.00691 0.013 0.781 0.781 0.778
3 355 | 450 -0.00703 0.00704 0.047 1.789 1.790 1.785
4 340 | 60.0 -0.00715 0.00716 0.117 3.241 3.244 3.238
5 325 | 75.0 -0.00727 0.00728 0.241 5.164 5.172 5.166
6 3.10 | 90.0 -0.00737 0.00740 0.437 7.585 7.604 7.596
7 295 | 1050 | -0.00747 0.00750 0.729 10.532 10.570 10.563
8 2.80 | 1200 | -0.00756 0.00759 1.144 14.037 14.107 14.101
9 2.65 | 1350 | -0.00762 0.00766 1.713 18.130 18.251 18.248
10 2.50 | 150.0 | -0.00766 0.00771 2472 22.843 23.043 23.044
11 235 | 1650 | -0.00766 0.00772 3.464 28.206 28.523 28.531
12 220 | 180.0 | -0.00761 0.00769 4.734 34.249 34.736 34.754
13 205 | 1950 | -0.00750 0.00759 6.338 40.999 41.728 41.759
14 1.90 | 210.0 | -0.00731 0.00742 8.333 48.476 49.539 49.591
15 1.75 | 2250 | -0.00699 0.00712 10.783 56.693 58.212 58.294
16 1.60 | 2400 | -0.00650 0.00665 13.750 65.651 67.779 67.900
17 145 | 2550 | -0.00576 0.00594 17.288 75.329 78.255 78.425
18 1.30 | 270.0 | -0.00462 0.00484 21.426 85.675 89.617 89.846
19 1.15 | 2850 | -0.00283 0.00309 26.133 96.589 101.780 102.065
20 1.00 | 300.0 0.00015 0.00015 31.246 107.872 114.508%* 114.820%*

*Extremely close
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Table 112. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= k, /2), and the true bending strains, (g, —&,)/2; P=400 Ib at the beam tip.

. g, ,in/in g, ,in/in U, in y, . in Y, ,in 3, .in

! G-t} X, 10 nonlil\LaeSzflrra;lpper nonlil\LaeSatlrralr(l)wer Nastran Nastran Nacj::rlelgciiuorr\lled Curved DTF
surface strain surface strain x-disp. y-disp. Eq. (20) Eq. (18b)

0 4.00 0.0 -0.00843 0.00843 0.000 0.000 0.000 0.000
1 3.85 15.0 -0.00857 0.00857 0.002 0.244 0.244 0.241
2 3.70 30.0 -0.00870 0.00870 0.020 0.988 0.988 0.984
3 3.55 450 -0.00882 0.00883 0.074 2.260 2.262 2.255
4 340 60.0 -0.00893 0.00895 0.186 4.088 4.094 4.086
5 3.25 75.0 -0.00903 0.00906 0.381 6.502 6.519 6.509
6 3.10 90.0 -0.00911 0.00915 0.690 9.531 9.568 9.558
7 295 | 105.0 -0.00918 0.00923 1.147 13.205 13.280 13.270
8 2.80 | 120.0 -0.00922 0.00928 1.791 17.555 17.692 17.684
9 2.65 | 1350 -0.00923 0.00930 2.668 22.610 22.845 22.841
10 2.50 | 150.0 -0.00919 0.00928 3.829 28.398 28.783 28.785
11 235 | 165.0 -0.00911 0.00922 5.331 34943 35.549 35.559
12 220 | 180.0 -0.00897 0.00909 7.238 42.264 43.186 43211
13 205 | 1950 -0.00874 0.00888 9.619 50.376 51.740 51.785
14 1.90 | 2100 -0.00841 0.00858 12.548 59.282 61.251 61.325
15 1.75 | 2250 -0.00793 0.00814 16.098 68.974 71.753 71.868
16 1.60 | 240.0 -0.00728 0.00751 20.339 79.429 83.273 83.441
17 145 | 2550 -0.00635 0.00663 25.326 90.600 95.812 96.048
18 1.30 | 270.0 -0.00502 0.00534 31.077 102.412 109.336 109.649
19 1.15 | 285.0 -0.00302 0.00340 37.538 114.747 123.743 124.125
20 1.00 | 300.0 0.00022 0.00022 44.496 127413 138.776%* 139.187*

*Extremely close
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Table 113. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= k, /2), and the true bending strains, (g, —&,)/2; P=500 Ib at the beam tip.

. g, ,in/in g, ,in/in U, in y, . in y; ,in 3, .in

! AR I nonlil\LaeSzflrra;lpper nonlil\LaeSzflrralr(l)wer Nastran Nastran Nas::rleuelciiuszed Curved DTF
surface strain surface strain x-disp. y-disp. Eq. (20) Eq. (18b)

0 4.00 0.0 -0.01005 0.01005 0.000 0.000 0.000 0.000
1 3.85 15.0 -0.01018 0.01019 0.003 0.291 0.291 0.288
2 3.70 30.0 -0.01030 0.01031 0.029 1.176 1.177 1.170
3 3.55 450 -0.01040 0.01042 0.105 2.685 2.688 2.680
4 340 60.0 -0.01049 0.01052 0.262 4.849 4.860 4.849
5 3.25 75.0 -0.01055 0.01059 0.534 7.698 7.726 7.714
6 3.10 90.0 -0.01059 0.01065 0.963 11.261 11.323 11.310
7 295 | 105.0 -0.01060 0.01067 1.594 15.568 15.690 15.678
8 2.80 | 120.0 -0.01058 0.01066 2479 20.644 20.867 20.856
9 2.65 | 1350 -0.01051 0.01061 3.674 26.514 26.894 26.887
10 2.50 | 150.0 -0.01038 0.01051 5.245 33.198 33.816 33.815
11 235 | 165.0 -0.01019 0.01034 7.259 40.708 41.672 41.682
12 220 | 180.0 -0.00993 0.01010 9.792 49.052 50.505 50.532
13 205 | 1950 -0.00957 0.00977 12.922 58.225 60.353 60.404
14 1.90 | 2100 -0.00909 0.00933 16.729 68.213 71.251 71.336
15 1.75 | 225.0 -0.00847 0.00875 21.288 78.986 83.225 83.356
16 1.60 | 240.0 -0.00765 0.00798 26.667 90.496 96.286 96.480
17 145 | 2550 -0.00658 0.00696 32.909 102.677 110.428 110.695
18 1.30 | 270.0 -0.00512 0.00556 40.018 115.437 125.603 125.950
19 1.15 | 285.0 -0.00302 0.00353 47913 128.652 141.694 142.107
20 1.00 | 300.0 0.00030 0.00030 56.353 142.146 158.439% 158.866*

*Extremely close
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Table 114. Curved deflections, y,, of the tapered cantilever tubular beam calculated from Nastran

nonlinear analysis [eq. (20)] and from Curved Displacement Transfer Functions [eq. (18b)] using the
known depth factors, ¢,(= &, /2), and the true bending strains, (¢, —€;)/2; P=600 Ib at beam tip.

. g, ,in/in g, ,in/in U, in y,.in Yy, ,in 3, .in
! Cio ) X, 10 nonlil\feszflrralilpper nonlil\LaeSz:rralr(l)wer Nastran Nastran Nasglel:c?ged Curved DTF
surface strain surface strain x-disp. y-disp. Eq. (20) Eq. (18b)
0 4.00 0.0 -0.01154 0.01155 0.000 0.000 0.000 0.000
1 3.85 15.0 -0.01166 001167 0.004 0.334 0.334 0.330
2 3.70 30.0 -0.01175 0.01177 0.038 1.348 1.349 1.342
3 3.55 450 -0.01182 0.01185 0.137 3.074 3.079 3.069
4 340 60.0 -0.01187 0.01191 0.342 5.543 5.559 5.545
5 3.25 75.0 -0.01189 0.01195 0.695 8.783 8.824 8.809
6 3.10 90.0 -0.01187 0.01194 1.249 12.824 12.915 12.898
7 295 | 105.0 -0.01181 0.01190 2.059 17.689 17.868 17.851
8 2.80 | 120.0 -0.01170 0.01182 3.188 23.399 23.724 23.708
9 2.65 | 1350 -0.01154 001168 4.703 29971 30.522 30.509
10 2.50 | 150.0 -0.01131 0.01148 6.678 37412 38.301 38.296
11 235 | 1650 -0.01100 0.01120 9.191 45.725 47.100 47.107
12 220 | 180.0 -0.01061 0.01084 12.322 54901 56.955 56.980
13 205 | 1950 -0.01011 0.01038 16.154 64917 67.897 67.949
14 1.90 | 2100 -0.00949 0.00980 20.765 75.740 79.950 80.040
15 1.75 | 225.0 -0.00873 0.00909 26.227 87.320 93.131 93.271
16 1.60 | 240.0 -0.00778 0.00819 32.597 99.593 107.442 107.643
17 145 | 2550 -0.00658 0.00706 39.905 112474 122.860 123.132
18 1.30 | 270.0 -0.00504 0.00559 48.133 125.863 139.326 139.668
19 1.15 | 285.0 -0.00291 0.00355 57.183 139.637 156.715 157.104
20 1.00 | 300.0 0.00037 0.00037 66.792 153.640 174.763* 175.138*

*  Extremely close; beam-tip deflection = 58% of 300-in span.
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