

Lightweight and High-resolution Astronomical X-ray Optics Using Single Crystal Silicon

William W. Zhang NASA Goddard Space Flight Center

K. D. Allgood¹, M.P. Biskach¹, K.W. Chan², J.D. Kearney¹, J.R. Mazzarella¹, R.S. McClelland¹, A. Numata¹, L.G. Olsen, R.E. Riveros², T.T. Saha, M.J. Schofield¹, M.V. Sharpe¹, P.M. Solly¹, W.W. Zhang NASA Goddard Space Flight Center ¹ Stinger Ghaffarian Technologies, Inc. ² University of Maryland, Baltimore County

J.M. Carter, J.A. Gaskin, W.D. Jones, J.J. Kolodziejczak, S.L. O'Dell NASA Marshall Space Flight Center

• PSF

– Similar to or better than Chandra's: ~0.5" HPD

• Mass

– Similar to Chandra's: ~1,500 kg

Photon collecting area

– At least 10X Chandra's

- Cost
 - Comparable to Chandra's in RY\$ or
 - Less than 0.5X Chandra's in constant \$

Single Crystal Silicon Mirrors

Meta-shell: mirrors bonded onto a silicon structural shell using silicon spacers and epoxy

Assembly: Many meta-shells aligned and flexure-mounted onto an aluminum or composite spider web

Notional Design of an X-ray Surveyor Mirror Assembly

- Focal length: **10 m**
- Outer diameter: **2 m**
- Inner diameter: **0.3 m**
- No. of mirror layers/shells: ~400
- Physical mirror surface area: ~250 m² (cf. Chandra's 19 m²)
- Effective area at 1 keV: ~1.2 m² (cf. Chandra's 0.08 m²)
- Diffraction limit at 1 keV: 0.36" (90% Power Diameter)

→ 25,000 mirrors, each 100 x 100 x 0.5 mm³

- Fabricate ~25,000 mirrors
 - Typical mirror: 100mm by 100mm by 0.5mm
 - Technical, cost, and schedule challenges
- Align and bond these mirrors onto ~20 metashells
 - Technical and schedule challenges
- Integrate ~20 meta-shells into an assembly
 - No challenge. Substantially similar to XMM-Newton's and Chandra's mirror integration.

Mirror Fabrication

- So far the ONLY way to fabricate mirrors that meet requirements is precision polishing.
- Polishing has two problems
 - It has only made thick mirrors
 - Typical aspect ratio (size/thickness): ~6 to 10
 - X-ray Surveyor requirement (size/thickness): ~200
 - It is slow and expensive
- We are developing two solutions
 - Use single crystal silicon
 - Adopt mass production techniques

• It has no internal stress

 Damage-free removal of material from the surface does not lead to unpredictable figure change, in contrast to thin sheet of glass.

It has excellent properties

- Low density
- High thermal conductivity
- Low thermal expansion
- High elastic modulus

• It is commercially and inexpensively available

Mirror Fabrication

- Generation: setting radius and cone angle
- Light-weighting: removing the extra pounds
- Acid etch: removing damage and stress
- Stress-polishing: making precise optics
- Trimming: making it fit
- Edge treatment: preventing breakage
- Metrology: verifying figure quality

Building a Meta-shell

• Structural

- A meta-shell of many mirrors bonded with Hysol
 9309 epoxy can withstand generic launch load.
- Thermal
 - A meta-shell can achieve better than 1" PSF performance under typical on-orbit thermal conditions.

Gravity release

 A meta-shell constructed with its optical axis in the horizontal direction can achieve better than 1" PSF once gravity is released.

Areas of Development

• Mirror Fabrication

- Figure quality improvement (currently at ~3" HPD)
- Fabrication time reduction
- Coating
 - Atomic layer deposition or magnetron sputter
 - Reduction/elimination of figure distortion

Alignment and Bonding

- Precision machining of spacers
- Fast application and cure of epoxy

• System level studies

- Complete end-to-end structural, thermal, and optical performance (STOP) analysis
- Construction and test of meta-shells: performance and environmental

Prospects

- 2016-2017
 - Demonstrate possibility of making sub-arcsec lightweight single crystal silicon mirrors
 - Build mirror stacks that can produce X-ray images close to 1" HPD
- 2018-2019
 - Demonstrate mass-production process for making sub-arcsec mirrors; Team up with industry for implementation
 - Build and test meta-shells that meet X-ray Surveyor requirements: performance and environmental (TRL-6); Team up with industry for systems engineering

Acknowledgement

This work has been funded by NASA through APRA and SAT Programs.

