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Human missions to Mars may require radical changes in the approach to extra-vehicular 

(EVA) suit design. A major challenge is the balance of building a suit robust enough to 

complete multiple EVAs under intense ultraviolet (UV) light exposure without losing 

mechanical strength or compromising the suit’s mobility. To study how the materials degrade 

on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team 

at NASA’s Johnson Space Center (JSC) to place space suit materials on the Scanning 

Habitable Environments with Raman & Luminescence for Organics and Chemicals 

(SHERLOC) instrument’s calibration target of the Mars 2020 rover.  In order to select 

materials for the rover and understand the effects from Mars equivalent UV exposure, JSC 

conducted ground testing on both current and new space suit materials when exposed to 2500 

hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA’s 

Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were 

Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated 

Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, 

and chemical composition before and after radiation. Mass loss was insignificant (less than 

0.5%) among the materials. Most materials loss tensile strength after radiation and became 

more brittle with a loss of elongation. Changes in chemical composition were seen in all 

radiated materials through Spectral Analysis. Results from this testing helped select the 

materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a 

correlation to the chemical changes after radiation—which is what the rover will send back 

while on Mars—to the mechanical changes, such as tensile strength. 

 

Acronyms 

UV  = Ultraviolet 

NASA  = National Aeronautics and Space Administration 

MSFC  = Marshall Space Flight 

JSC  = Johnson Space Center 

DUV  = Deep Ultraviolet 

JPL  = Jet Propulsion Laboratory 

SHERLOC = Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals 

EMU  = Extravehicular Mobility Unit 

EVA  = Extravehicular Activity 

TMG  = Thermal Micrometeoroid Garment 

psi  = Pounds per Square Inch 

I. Introduction 

UMAN missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A 

major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense UV 

light exposure without losing mechanical strength or compromising the suit’s mobility. To study how the materials 

degrade on Mars in-situ, JPL invited the Advanced Space Suit team at JSC to place space suit materials on the 

Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) 

                                                           
1 Advanced Space Suit Engineer, Space Suit & Crew Survival Systems Branch, and 2101 NASA Parkway, Houston, TX 77058. 
2 Space Scientist, Astromaterials Research and Exploration Science Directorate, and 2101 NASA Parkway, Houston, TX 77058. 

H 



 

International Conference on Environmental Systems 
 

 

2 

instrument’s calibration target of the Mars 2020 rover.  In order to select materials for the rover and understand the 

effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials 

when exposed to 2500 hours of Mars mission equivalent UV. From this testing, they were able to down select to six 

materials to be used for the Mars rover. In addition, they can start to create a ground model of how space suit materials 

degrade post-radiation. The final goal is to create a relationship between what the chemical compositions readings are 

when received from the SHERLOC instrument and the mechanical strength. 

II. Test Overview 

As stated previously, one of the purposes of this test is to down select a prioritized list of space suit materials to 

test on the Mars 2020 rover. In addition, this test was to prove that the SHERLOC instrument would receive valuable 

data from the space suit materials after being radiated. SHERLOC uses Deep UV (DUV) Raman and Fluorescence 

spectra to collect chemical analysis of the materials. It needed to be shown through testing that the space suit materials 

would show changes with the SHERLOC after being radiated with Mars equivalent UV light to prove that this future 

experiment on the rover was worth completing.  

A. Test Article Selection 

Space suit materials from the bladder through the last layer of 

the Thermal Micrometeoroid Garment (TMG) define the 

capability of the suit; thus, identifying candidate materials early 

in the design life cycle is a critical milestone for all future suit 

development. Not developing the materials compatible with the 

Mars radiation environment could create an unsustainable 

logistics need or severely limit the amount of EVAs that could be 

conducted on any mission due to fabrics losing their mass and 

mechanical strength, or even change chemistry. Understanding 

current suit materials behavior on Mars will bound the problem 

by determining what today's state of the art can provide.  

The most important materials to select are the ones on the 

outside of the suit, since they will see the highest amount of UV 

Radiation and dust while on Mars. For the EMU, those materials 

are Orthofabric, Teflon, polysulfone (EMU Visor Material), and 

boot sole silicone. For advanced space suits, such as the Z-2 space 

suit prototype, they 

are nGimat coated 

Orthofabric, 

nGimat coated Teflon, Makralon Polycarbonate (Z-2 Helmet Material), 

and boot sole rubber by Wolverine. The nGimat coating is a dust 

resistant, omniphobic coating that is being considered for advanced 

materials on the space suit. Due to budget and time constraints to 

complete this test series, polysulfone, boot sole silicone, and the boot 

sole rubber was eliminated from the testing list.  

Others soft good materials considered for testing were the main 

restraint and structure materials of the EMU space suit. As seen in Figure 

1, Dacron and Bladder material are two of those materials. In addition, 

Spectra and Vectran are also used for restraint. The main reason these 

materials were considered for evaluation for the Mars 2020 rover is for 

the testing that can be done right after the Mars Rover lands. This will 

tell real-time how the materials have degraded on the journey to Mars 

due to higher radiation sources such as Galactic Cosmic Radiation 

(GCR) and Solar Particle Events (SPE) radiation. These materials won’t 

be exposed to the intense UV radiation that the outer space suit materials 

will be throughout a Mars mission, but if they are included on the 

calibration target for the reason of studying their higher energy radiation 

degradation received on the trip to Mars, then there is a need to 

characterize them as well. In addition, future outer layer soft goods 

Figure 1 Space Suit Material Lay-up. Soft good 

material lay-up for the Extravehicular Mobility 

Unit (EMU) currently used on the International 

Space Station.1 

Figure 2 Set-up of UV Chamber. View of 

the inside of the UV Chamber with a 

material set mounted. 
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materials, if developed and utilized in a future mission, may have similar characteristics as these materials, and 

therefore, predictions can be made for how they will degrade on the surface of Mars. In addition, it will help to further 

prove the ground model testing that can be done on soft good materials to certify them for a Mars surface mission.  

The final list of nine materials that were tested for this study are the following: 

 Orthofabric 

 nGimat coated Orthofabric 

 Teflon fabric 

 nGimat coated Teflon fabric 

 Polycarbonate 

 Vectran fabric 

 Dacron fabric 

 EMU Bladder cloth 

 Spectra weave 

B. Test Set-up 

The first selection for the test set-up was where to complete the UV radiation testing in the time and budget 

allocated to the project. For these factors, MSFC was selected to complete radiation testing in two of their UV 

Radiation Vacuum chambers. The lamps used were 1 kW mercury-xenon lamps that accentuated UV output. One UV 

lamp had a 7 inch spot size, and the other a 9 inch spot size. The set-up of their UV vacuum chamber can be seen in 

Figure 2. A radiation time of 2500 hours of Mars equivalent UV was selected for a reference mission of 500 day 

surface stay on Mars with a 10 hour EVA every other day. To radiate each of the materials for this length required 

approximately 23 days of continuous exposure in a chamber. This was determined by the intensity of each lamp. In 

addition, the lamps radiation level was between 230-500 nanometers. In comparison, the most damaging rays of Mars 

UV radiation that the soft good materials will receive is between 200-400 nanometers. 

Testing locations were also chosen for pre/post measurements of mechanical strength and chemical composition. 

Mass measurements and tensile testing occurred at JSC in the Advanced Material Lab by Joseph Settles and Katelyn 

Melone. Chemical composition was gathered through DUV Raman Spectra and Fluorescence Analysis at JPL by Ivria 

Doloboff. This chemical analysis was chosen to be completed at JPL because it is a table-top version of the SHERLOC 

instrument. 

Finally, ASTM standards had to be selected for the tensile testing for mechanical strength. For the all the soft good 

materials except the spectra weave, ASTM D5035-11 was used. This is tensile testing using a strip method of 6”x1” 

strips of fabrics being tensile tested. In previous tests, the spectra weave had used this standard. However, the results 

were very inconsistent due to spectra’s material strength. Therefore, the spectra weave was tested according to ASTM 

D6775-13 for more consistent results. The polycarbonate material was tested according to ASTM D638-14 as a type 

I dog-bone sample. 

III. Results 

All nine materials were radiated with 2500 hours of Mars equivalent UV as planned. The following table shows the 

number of tensile and spectral test samples each material had. Materials with less than five tensile test samples post-

radiation or less than three spectral test samples was due to the limitations of the spot size of the UV lamp and the 

amount of time allowed for testing. Those limitations made us have to eliminate some of the material being tested. 

The following sections describe all the changes that were observed from the materials pre- and post- radiation testing. 

 

Table 1 Amount of Materials  

Material Pre-Radiation 
Tensile Sample 

Quantity 

Post-Radiation 
Tensile Sample 

Quantity 

Pre-Radiation 
Spectral Sample 

Quantity 

Post-Radiation 
Spectral Sample 

Quantity 

Orthofabric 5 5 3 3 

nGimat coated 
Orthofabric 

5 4 3 2 

Teflon fabric 5 5 3 3 

nGimat coated Teflon 
fabric 

5 4 3 2 

Polycarbonate 5 3 3 2 
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Vectran fabric 5 5 3 3 

Dacron fabric 5 5 3 3 

C. Physical Changes 

One of the first changes to be noticed between the pre- and post- radiation of all the materials is a yellowing 

discoloration that can be seen below in Figure 3. This discoloration is caused by the UV rays breaking down the 

chemical bonds in the materials. Some materials were more affected than others. An interesting material that was 

affected and could have operational impacts going forward was polycarbonate. This is the planned helmet pressure 

bubble material and the UV radiation caused the material to yellow and transparency was degraded which can be seen 

in Figure 4. Further study will need to be completed about the concern of this discoloration of the polycarbonate, but 

it may warrant for UV protective coatings being placed on the bubble or spares to be sent for change out on the surface 

during a future Mars mission. Another material, Dacron, was one of the materials most affected by this color change. 

Again, that can be seen in Figure 3. 

D. Mass loss 

Mass was another characteristic measured pre- and post- radiation to 

see if there was a significant change caused by the radiation. However, mass loss was insignificant (less than .5%) 

among all the materials. See the Figure 5 below for the results of the mass loss comparison.  

E. Material Strength 

Material strength is a crucial 

characteristic for soft good materials used to 

fabricate a pressurized space suit. Under 

current planetary space suit architectures, the 

suit needs to operate at a pressure of 4.3 

pounds per square inch (psi) to keep a crew 

member alive and working effectively. The 

operating pressure may even be as high as 8.3 

psi to eliminate the time required for pre-

breathe operations such as how they currently 

operate EVAs with the EMU on the 

International Space Station. This study was 

one of the first of its kind to be completed to 

understand how Mars equivalent UV will 

degrade the soft goods material strength and 

chemical composition to understand how the materials are affected. Because the information received from 

SHERLOC in-situ on Mars is only the chemical composition, it is essential to understand how those chemical changes 

Figure 4 Pre/Post Radiation of 

Polycarbonate. Left three post-radiation 

samples are yellowed compared to the pre-

radiation on the right. 

Figure 3 Pre/Post Radiation of Polycarbonate after Tensile Testing. 

Discoloration was seen for all the materials tested. Dacron, seen above, 

was one of the materials most effected.  

0 0.2 0.4 0.6

Orthofabric

Vectran

Spectra

nGimat coated…

Polycarbonate

Percent

Percent Change of Mass Loss

Figure 5 Graph of Mass Loss. Graph showing the material 

comparisons of mass loss post-radiation. 
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relate to material strength loss here on the ground. This will directly feed into which materials should be chosen for a 

Mars space suit material construction. It is important to note this pilot study only included one data point of material 

strength and chemical composition at 2500 hours, and more testing will need to be completed. 

Tensile testing was chosen as the method of evaluating material strength. As stated before in the part “B. Test Set-

up”, this testing was completed in JSC’s Advanced Material lab using three different ASTM standard to accommodate 

the different materials.  

The average of the tensile testing results are shown in Figure 6. Dacron and Vectran were the most affected, losing 

58.7% and 48.1% of tensile strength. In this experiment all the materials, except the nGimat coated Orthofabric lost 

tensile strength due to the UV radiation. It is not known why the nGimat coated Orthofabric “gained” strength. The 

standard deviations for the materials when tensile tested—especially those post-radiation—were high. Three factors 

have been identified as potential causes to the variability in the tensile testing. First, the soft good textiles were not 

conditioned prior to tensile testing. Lab conditions such as temperature and humidity have a known affect to tensile 

test results, especially affecting soft good textiles. A future method to reduce this standard deviation is to condition 

the materials according to ASTM D1776 for textiles and ASTM D618-13 for plastics. The second factor is the tested 

post-radiated materials were shipped to Marshall for radiation exposure and then shipped back to JSC for testing. The 

pristine materials were just pulled out of storage directly before tensile testing was completed. This may have affected 

the tensile test results of the materials, and potentially this difference could have been magnified because of no 

conditioning being completed. It might reduce future variability if the tensile testing is completed at Marshall for both 

pre- and post- radiated materials to reduce time the materials spend in shipping and processing. The last factor is the 

small quantity of samples. Because of the limited time the team had to complete the pilot study only five of each 

material were radiated then tested. Textiles are known to have more variability in tensile test results. It will reduce 

future variability if the quantity of sample size of each material is increased. 

 

 

 

Figure 6 Percent Loss of Tensile Strength and Elongation Post-Radiation. Graph of the comparison of 

tensile strength and elongation pre- and post- radiation. 
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F. Elongation 

A study of percent elongation loss can be 

seen above in Figure 6. This was to understand 

if the material became brittle after being 

radiated. It was interesting to see that non-

coated Orthofabric became much more brittle 

than the nGimat coated Orthofabric. However, 

because of the variability in the nGimat 

Orthofabric tensile test results this result will 

need to be further investigated before validated. 

If this result is constantly seen in further testing, 

it would be an additional reason to coat the 

Orthofabric to maintain the fabric’s flexibility. 

G. Chemical Composition 

All of the materials radiated saw changes to 

their chemical composition. An example of this 

can be seen in Figure 7, which is the DUV 

Raman spectra from Teflon. The blue shows the 

pristine sample and the green is the radiated 

sample. As seen in the figure, the bond peaks 

start to increase width as the crystal structure breaks down. This causes defect modes—peaks in the spectra not seen 

previously—to be detected. For this Raman spectrum, the trio of peaks labeled “1” arise from vibrations of C-C and 

C-F bonds. Note that the peak intensities drop significantly for the irradiated samples (green spectra), indicating loss 

or shielding of the Teflon molecular structure. The peak width has increased (not visible here), indicating breakdown 

of the Teflon crystalline structure. Also important is the appearance of an unattributed defect mode (labeled “2”), a 

broad feature arising from deviations from the nominal Teflon chemical structure. The feature labeled “3” is an artifact. 

Aside from the Raman features, it is evident that the native fluorescent background at the high-wavelength end of the 

spectrum has diminished during irradiation, resulting in a lower intensity. All of the Raman and fluorescence features 

can be measured and used as empirical means of measuring chemical changes in the space suit materials upon 

irradiation. 

 The success of this analysis shows that a correlation between changes in the spectral analysis can be related to 

a certain material strength through tensile testing. It is the goal of the SHERLOC space suit material experiment that 

this data of spectral analysis can be compared to the ground results at close to equivalent radiation levels to validate 

this ground testing method of using a UV vacuum chamber to mimic Mars surface radiation. 

IV. Conclusions 

This study of space suit materials evaluated the physical, material strength, elongation, and chemical changes 

caused by UV radiation by 2500 hours of Martian equivalent UV. It successfully showed that correlations can be 

drawn between changes seen in tensile strength to changes seen in chemical composition. This validates the space suit 

material experiment that will take place on the Mars 2020 rover. From the findings of this study, the six materials 

were chosen that will fly on that experiment. They are Orthofabric, Teflon, nGimat coated Teflon, Dacron, Vectran, 

and Polycarbonate. All six of these material also pass the off-gas requirements for the Mars 2020 rover from tests 

completed at Marshall and Goddard Space Flight Centers. 

V. Forward Work 

The next step is to create a Mars-like chamber to complete more UV radiation testing in. In this chamber, we will 

strive to maintain a Mars equivalent temperature, pressure, and atmosphere. By making a Mars chamber, it is our hope 

that the results will be closer to those that are seen in-situ on Mars. The team at JSC and MSFC received funding in 

November 2016 to start this work through the NASA Innovation Kick-Starter fund (NIKS).  

After the Mars-like chamber has been created and validated, the testing will start to create a ground model of each 

material selected. The Mars 2020 rover has an expected life of 1 Martian year, which equals about 12,000 hours of 

UV exposure. Because the rover does not have a scheduled interval for when it will look at its calibration target, we 

need to have ground-based data throughout its lifetime to correlate what the chemical changes mean to material 

strength to see if the ground-based model matches the in-situ data. How that can be accomplished is by pulling 

Figure 7 DUV Raman Spectra for Teflon. Spectral wavelengths 

show the Teflon’s chemical composition pre- and post- radiation. 

See text for explanation of the numbered items. 
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materials at intervals through the radiation testing, and complete the material strength and chemical composition 

analysis. The rover’s results can then be used to evaluate the effectiveness of our ground testing, and create a standard 

in which to test any material—especially soft goods used for space suits and habitats—in future Mars missions. 
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