

Cost Drivers 19 Aug 2015

Henry Wright LaRC henry.s.wright@nasa.gov

- Provide some perspective on characteristics or features which drive the cost of the EDL Instrumentation
- Using MEDLI, MEDLI2, EFT1, and Ares I-X as case studies
- Short answer nothing magic "it all depends"

Cost Sources

Hardware Heritage and Maturity

Hardware Development

Measurements: Type, Quality, Quantity (Data), & Architecture

> Total Cost

Part Count

Integration & Testing Approach

Staffing Levels – estimate vs assigned

Project Duration

Programmatics 7120.5/.8 8705.4 (A-D, E, F) Oversight

Measurement Types

Imaging

- Parachutes
- HIAD/SIAD/ADEPT, etc
- Visible; IR

Aero Decelerator Attachment Loads

Heat Flux

Vehicle Dynamics

• IMU

- Forebody vs aftbody
- Components Convective, Radiant, Total

Pressure

- Surface forebody & aftbody
- Inside aeroshell
- Differential vs Absolute

Temperature

- Embedded TPS
 - Depth
 - Type temp range
- Recession

Measurements

Measurements Drive Everything	~	What accuracy is needed to meet the science requirements?	 Sensor selection Signal conditioning needed A/D – 12, 14, 16 bit? Calibration needed Location knowledge Compensation (CJC)
		How many measurements are needed to meet the science requirements?	 Sensor quantity Channels in DAS Extent of Multiplexing Data rate/volume Harnesses Installation
		Are the measurements passive or active? Do they require excitation, amplification, etc.?	 Signal conditioning Amplifiers Voltage levels, "cleanliness" EMI/EMC concerns Grounding approach

Data Acquisition & Signal Conditioning Approach

- Dedicated unit(s) MEDLI and MEDLI2 provide a serial data stream to the host spacecraft Compute Element
- Use spacecraft systems to provide signal conditioning and data acquisition function (EFT-1) – analog output from sensors to spacecraft provided signal conditioning
- Distributed approach sensors have local signal conditioning and communication (aka CAN Bus Architecture)

Data Return Approach

- Real time data return
 - Impact is limits on data rate/volume (sensor count or sampling)
 - Risk is data drop-outs since only have a single opportunity to return the data
- Store and forward
 - Benefit is can usually collect and store a lot more data
 - Impact is need for data storage approach and time/mission impacts for data return
 - Risk is loss of data vehicle loss, memory loss, etc.
- Store and physical recovery same as Store and Forward
- Some combination of all/some?

Heritage, Maturity, Development

Environments

- Flight/Design loads specified vs component capabilities
- Temperature big driver negotiate on continuous survival heater power
- Shock/Vibe can sometimes be resolved via hardware solutions – isolators, etc.
- EMI/EMC traditional shielding approaches can resolve

Product Assurance

- Planetary Protection Heating can limit choices plastic parts, etc.
- Contamination Control outgassing can limit choices
- EEE Parts
- Rest is process takes time and staff to accomplish – depends on the mission

Development Efforts

- Finding candidate sensors/hardware?
- Demonstrate environmental compliance
- Do No Harm to Flight System?
- Meet performance needs? (Accuracy, operations, rates, analog/digital)
- Modify sensor to meet needs?

Hardware Development – EEE Parts

Grade	Summary	Reliability	MTBF	Cost	Typical Use
1	"Space" quality class qualified parts, or equivalent.	Highest	Longest	Very High	Space Flight
2	"Full Military" quality class qualified parts, or equivalent.	Very High	Very Long	High	Space flight or critical GSE
3	"Low Military" quality class parts, and Vendor Hi- Rel or equivalent	High	Long	Moderate	Space flight experiments and ground support
4	"Commercial" quality class parts. No qualification required.	Variable	Variable	Low	Flight Experiments and ground support

- NEPP.NASA.gov MSFC Std 3012
- EEE Parts grade drives schedule Grade 1 or 2 have long lead times.
- Flight tests usually Grade 3 or 4
- Hosted payloads Grade 1 or 2

Assembly, Integration, and Testing Approach

- Assembly, Integration, and Test Approach
 - As a Subsystem stand-alone?
 - As part of the integrated spacecraft/Assembly?
- Is a dedicated end to end calibration effort needed to meet science requirements/accuracy?
- Channelization
 - Is it possible to stimulate each sensor after installation and verify polarity and proper channels?
 - If cannot do sensor stimulation, can each sensor be disconnected from the harness and channelization be performed via the harness and Break Out Boxes?

• What level of sensor location knowledge is required – laser scan, etc.?

- Environmental Testing Approach
 - Qual and flight acceptance vs protoflight impacts part count, test levels, and risk
 - Is DHMR required?
 - Where does calibration fit in the sequence?

MEDLI2 AI&T Flow

And a Whole Bunch of Other Stuff

Project Duration

- Need a reasonable duration to implement project
- But if it drags on, the marching army will kill your budget

Part Count

- How much flight and flight spare hardware?
- How many EDUs needed?
- Sparing philosophy full spares or kitted?
- GSE and test fixtures test harnesses, BOBs, etc.

Cost can be impacted by a wide range of additional elements

Programmatics

- Need to decide what level of tailoring (7120.5/.8 & 8705.4) makes sense – not all processes need to be complied with
- Some rigor is a "good thing"
- What level of insight/oversight is specified by the funder? Some want more

Staffing

- Center policy on minimum FTE or WYE increment (0.5, 0.25)
- Less experienced staff = longer time to perform the task
- Policies and rules change over the life of the project

- Need to consider what program is funding the effort and how that program likes to manage projects
- Need to define the limits of the measurement subsystem what is being provided and implemented – and by whom
- The yearly end of fiscal year drama will always introduce uncertainty which will impact the cost and cost phasing