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Pop Quiz:  

Using different views in analysis
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What does this look like?

A circle with a dot in the center?  

A sphere with a hole through the center?
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It could be this…
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Or it could be this…
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A single view can mislead you… 
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As designers, you have an arsenal 

of tools, techniques, and 

personnel available to you.  

Given your available budget and

time, we must be smart and

efficient in how and what we do.  

That’s where you can make a 

difference. 

Conclusion
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Questions?
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Introduction

• Probabilistic Risk Assessment (PRA) is one of the tools 

in NASA’s Safety & Mission Assurance (S&MA) toolbox.  

It provides both depth and width in evaluating systems, 

vehicles, vessels, facilities, and missions.

• It’s been used successfully in several industries, such as 

commercial nuclear power, aerospace, transportation, 

chemical, and medical. 

• NASA continues to get budgets with high expectations 

from the public.  S&MA must continue to do its job with 

less, thus we have to be smarter and more efficient.  
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What is PRA?

• PRA is a comprehensive, structured, and disciplined approach to 

identifying and analyzing risk in engineered systems and/or processes. 

It attempts to quantify rare event probabilities of failures.  It attempts to 

take into account all possible events or influences that could reasonably 

affect the system or process being studied.  It is inherently and 

philosophically a Bayesian methodology. In general, PRA is a process 

that seeks answers to three basic questions:

What kinds of events or scenarios can occur (i.e., what can go 

wrong)?

What are the likelihoods and associated uncertainties of the events 

or scenarios?

What consequences could result from these events or scenarios 

(e.g., Loss of Crew, Loss of Mission, Loss of Hydrocarbon 

Containment, Reactor Core Damage Frequency)?

• There are other definitions and questions that it can help answer.

• The models are developed in “failure space”.  This is usually different 

from how designers think (e.g. success space).  

• PRAs are often characterized by (but not limited to) event tree models, fault 

tree models, and simulation models.
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When can PRA be Performed?

May 2016 10

NEW DEVELOPMENTS

The ideal time to conduct a PRA is at the beginning of the design process 

to incorporate the necessary safety and risk avoidance measures 

throughout the development phase at minimal cost.

INCIDENT RESPONSE

In the event of unexpected downtime or an accident, our team can assess 

the cause of the failure and develop appropriate mitigation plans to 

minimize the probability of comparable events in the future.

EXISTING SYSTEMS 

PRA can be applied to existing systems to identify and prioritize risks 

associated with operations.  Risk assessments can evaluate the impact of 

system changes and help avoid compromises in quality or reliability while 

increasing productivity.

In a nutshell, PRA can be applied from concept to decommissioning 

during the life cycle, including design and operations.
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PRA Overview
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PRA Process
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Documentation of the PRA 

supports a successful 

independent review process 

and long-term PRA application

Engineering 

Analysis is 

used to 

support 

success 

criteria, 

response 

time, etc.
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The PRA Team

• A PRA system analysis team includes both system domain 

experts and PRA analysts.  The key to success is multi-way

communication between the PRA analysts, domain experts, 

and management.

• A majority of PRA analysts have engineering degrees with 

operations and/or design backgrounds in order to understand 

how systems work and fail.  This is essential in developing the 

failure logic of the vehicle or facility.  

• Good data analysts understand how to take the available data 

to generate probabilities and their associated uncertainty for 

the basic events that the modelers can use or need.

• Building or developing a PRA involves:

– understanding its purpose and the appropriate modeling techniques, 

– designing how it will serve that purpose, 

– populating it with the desired failure logic and probabilities, and 

– trouble shooting it (nothing works the first time)
May 2016 13
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The PRA Team

May 2016 14



J
S

C
 S

&
M

A
 A

n
a
ly

s
is

 B
ra

n
c
h

Oil & Gas Examples

• Facility Level Risk Assessment

– Deepwater Drilling Operation

– Shallow Water Drilling Operation

– Subsea Oil Production

– Rigs and Platforms

• System Level Risk Assessment

– Generic Blowout Preventer (BOP)

– Dynamic Positioning System (DPS)

– Mud Systems

• Focused risk trade studies between current and proposed 

process/design.  For example:

– to evaluate the proposed requirement for additional subsea accumulator bottles 

in the Well Control Rule for a five year time frame vs. the existing system in API 

STD-53. 

– Comparing different BOP ram drivers and sealing

May 2016 15
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• There is much more to know about PRA than what you’ve seen 

today.  This presentation was to give you insight in order to ask 

the right questions when you are trying to decide:
o whether you need a PRA or not, 

o is it being performed properly and by qualified analysts, 

o is it answering the question(s) you need answered. 

• PRA (with the help of deterministic analyses) identifies and ranks 

the risk contributors, the FMEA analysts and Reliability Engineers 

can help solve the problem by focusing on the top risk drivers. 

In Closing
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Backup Charts
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Some Background

• In late fifties / early sixties Boeing and Bell Labs developed Fault Trees 
to evaluate launch systems for nuclear weapons and early approaches 
to human reliability analysis began

• NASA experimented with Fault Trees and some early attempts to do 
Probabilistic Risk Assessment (PRA) in sixties (most notably on the 
Apollo Program) but then abandoned it and reduced quantitative risk 
assessment

• Nuclear power industry picked up the technology in early seventies 
and created WASH-1400 (Reactor Safety Study) in mid seventies. 

– This is considered the first modern PRA

– Was shelved until Three Mile Island (TMI) incident happened in 1979.  It was 
determined that the WASH-1400 study gave insights to the incident that could not 
be easily gained by any other means.

• PRA is now practiced by all commercial nuclear plants in the United 
States and a large amount of data, methodology and documentation 
for PRA technology has been developed by the industry and the 
Nuclear Regulatory Commission (NRC)

– All new Nuclear Plants must license their plants based on PRA as well as 
“Defense In Depth” concepts.

– The NRC practices its oversight responsibility of the commercial nuclear industry 
using a “Risk” based approach that is heavily dependent on PRA.

May 2016 18
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Types Of Data That Exist In The Models

• Functional – A functional failure event is generally defined as failure of a 
component type, such as a valve or pump, to perform its intended function.  
Functional failures are specified by a component type (e.g., motor pump) and 
by a failure mode for the component type (e.g., fails to start).  Functional 
failures are generally defined at the major component level such as Line 
Replaceable Unit (LRU) or Shop Replaceable Unit (SRU).  Functional failures 
typically fall into two categories, time-based and demand-based.  Bayesian 
update as Shuttle specific data becomes available.

• Phenomenological – Phenomenological events include non-functional events 
that are not solely based on equipment performance but on complex 
interactions between systems and their environment or other external factors 
or events.  Phenomenological events can cover a broad range of failure 
scenarios, including leaks of flammable/explosive fluids, engine burn through, 
overpressurization, ascent debris, structural failure, and other similar 
situations. 

• Human – Three types of human errors are generally included in fault trees:  
pre-initiating event, initiating event (or human-induced initiators), and post-
initiating event interactions.  

• Common Cause – Common Cause Failures (CCFs) are multiple failures of 
similar components within a system that occur within a specified period of time 
due to a shared cause. 

• Conditional – A probability that is conditional upon another event, i.e. given 
that an event has already happened what is the probability that successive 
events will fail
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Common Cause Modeling
(More details and examples on this later)

• All large PRAs of complex and redundant machines must include 
“common cause” effects to be complete and accurate

• Common Cause are those conditions that defeat the benefits of 
redundancy

– Not “single point failures”

– Similar to “generic cause”

• There are three recognized ways to perform common cause modeling:
– The Beta Model

– The Multiple Greek Letter Model

– The Alpha Model

• We use an iterative approach to modeling common cause first the 
Beta Model approach is used and if it shows up as a risk driver a 
Multiple Greek Letter Model is used

• Generic data from NUREG/CR-5485 for the majority of the events since 
there are few cases where there is enough Shuttle data to develop 
Shuttle specific values

– RCS Thrusters and ECO sensors are examples of cases where Shuttle specific 
data is used to calculate the common cause parameters
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Notional PRA Examples

May 2016 21

First the Math

1.0E-02  =  0.01   1:100          (Probable)                 ~Shuttle Mission Risk

1.0E-06  =  0.000001  1:1,000,000   (Improbable)  having 20 coins 
simulaneously landing 
on tails

1.0E-12  =  0.000000000001   1:1,000,000,000,000  (ridiculous)
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4 x 1013 hours ago
2 x 1012 – 7 x 1011 hours ago

6.3 x 105 hours ago2.1 x 106 hours ago

Time Perspective

4 x 108 hours ago

May 2016 

~4.5 billion years ago
~228 – 80 million years ago

~46,000 years 

ago ~240 years ago ~72 years ago

1.2 x 1014 hours ago

~14 billion years 

ago
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Uncertainty Distribution

May 2016 23

• This distribution is a representation of the uncertainty associated with a PRA’s results

• The median is also referred to as the 50th percentile

Mean – 1.1E-02 (1:90)

Median – 1.1E-02 (1:94)

5th percentile – 7.9E-03 (1:127)

95th percentile – 1.6E-02 (1:63)

• The 5th and 95th percentile are common points on a distribution to show the range that 90% 
of the estimated risk lies between.  

• The mean is a common measure of risk that accounts for uncertainty or this distribution, thus 
the value or metric used to verify LOC requirements.
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Showing Uncertainty wrt Requirements

  1/10000   1/1000   1/100   1/10

MPCV Program
LOC

SLS Program
LOC

SLS Program
LOM

MPCV Program
Abort LOC

(Conditional)

1 in 1,600

1 in 1000

1 in 150

1 in 18

1 in 

1,000

1 in 

2,500

1 in 5001 in 

1,800

1 in 1001 in 200

1 in 101 in 30

Green Bar shows Requirement Value is met

Red Bar shows Requirement Value is not met

24May 2016 

System 1

System 2

Human Error

Conditional 

Failure

Notional
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Notional Risk Drivers via Pareto
(Top 80% of Calculated Risk)

25

% of Risk

May 2016 

A Pareto chart like this can be made for each project, rig, platform, etc.  

1 in xxx Risk

Various 

Subsystems and 

Scenarios
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When Should You Do a PRA?

• As early in the design process as you can in order to 

affect the design and corresponding risk with 

minimal cost impact (i.e. to support Risk Informed 

Design (RID))

• When the risk of losing the project is greater than 

the company can live with either due to loss of life or

for environmental or economic reasons

• To support Risk-Informed Decision Making (RIDM) 

throughout a project’s life cycle from “formulation to 

implementation” or “concept to decommissioning”

May 2016 26
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How much does a PRA cost?

• As you can also ask, “How much will it cost to not

do a PRA?”

• The cost of a PRA is a function of the level of detail 

desired as well as the size/complexity of the item 

being assessed and the mission life cycle

– You should only model to the level of detail that you have data 

and no further.  You may identify that significant risk exists at a 

sublevel, then your PRA is telling you that you need to study that 

level further.  It may not be a PRA, but a reliability assessment at 

that time.

– Modeling a drilling rig is on a different scale than just the Blowout 

Preventer (BOP).  However, understanding the need for a BOP 

can be important in its design and operation.

May 2016 27
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Absolute vs Relative Risk?

• You may have heard, “Don’t believe the absolute risk estimate, 

just the relative ranking”.

• Each event in a PRA is assessed to having a probability of 

failure (since the PRA is performed in “failure space”).  

– these failures are combined via the failure logic which is used to 

determine how they are combined and the resulting scenarios.  

– the failure probabilities of each event are used to establish the 

probability of each scenario thus ranks the scenarios as well as being 

added to produce the overall risk.  

– If different approaches and methods are used (which sometimes are 

needed in full scope PRAs), then the absolutes can be challenged and 

so may their rankings.  This is where experienced PRA analysts earn 

their pay to help minimize the difference. 

• As a result, some decision makers or risk takers want to know 

the overall risk, while others want to know how to reduce it by 

working on the top risk drivers first.  

May 2016 28
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Unknown and Underappreciated Risks

• Risk model completeness has long been recognized as a 

challenge for simulated methods of risk analysis such as PRA as 

traditionally practiced.  

• These methods are generally effective at identifying system 

failures that result from combinations of component failures that 

propagate through the system due to the functional dependencies of 

the system that are represented in the risk model.  

• However, they are typically ineffective at identifying system failures 

that result from unknown or underappreciated (UU) risks, 

frequently involving complex intra- and inter-system interactions that 

may have little to do with the intentionally engineered functional 

relationships of the system. 
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Unknown and Underappreciated Risks 
(Cont’d)

• Earlier in 2009, the NASA Advisory Council noted the following set of 

contributory factors:  

– Inadequate definitions prior to agency budget decision and to external 

commitments  

– optimistic cost estimates/estimating errors  

– inability to execute initial schedule baseline  

– Inadequate risk assessments  

– higher technical complexity of projects than anticipated  

– changes in scope (design/content)

– Inadequate assessment of impacts of schedule changes on cost  

– annual funding instability  

– eroding in-housetechnicalexpertise  

– poor tracking of contractor requirements against plans

– Reserve position adequacy  

– lack of probabilistic estimating  

– “go as you can afford” approach

– lack of formal document for recording key technical, schedule, and programmatic 

assumptions.
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