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In order to enable long-duration human exploration beyond low-Earth orbit, the risks 

associated with exposure of astronaut crews to space radiation must be mitigated with 

practical and affordable solutions. The space radiation environment beyond the 

magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays 

(GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open 

issue, reducing astronaut exposure to SPEs is achievable through material shielding because 

they are made up primarily of medium-energy protons. In order to ensure astronaut safety 

for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. 

However, the increasingly demanding spacecraft propulsive performance for these 

ambitious missions requires minimal mass and volume radiation shielding solutions which 

leverage available multi-functional habitat structures and logistics as much as possible. This 

paper describes the efforts of NASA’s RadWorks Advanced Exploration Systems (AES) 

Project to design minimal mass SPE radiation shelter concepts leveraging available 

resources. Discussion items include a description of the shelter trade space, the prioritization 

process used to identify the four primary shelter concepts chosen for maturation, a summary 

of each concept’s design features, a description of the radiation analysis process, and an 

assessment of the parasitic mass of each concept. 

Nomenclature 

Acronyms 

AES = Advanced Exploration Systems 

BEO = Beyond Earth Orbit 

BNNT = Boron Nitride Nanotubes 

CAD = Computer-Aided Design 

CQ = Crew Quarter 

CTB =  Cargo Transfer Bag 

DSH = Deep Space Habitat 

FAX = Female Adult voXel 

GCR = Galactic Cosmic Ray  

HAT = Human Spaceflight Architecture Team 

HDU = Habitat Demonstration Unit 

HMC = Heat Melt Compactor 

HZETRN = High charge (Z) and Energy  

  TRaNsport code 

ISS = International Space Station 

KPP = Key Performance Parameter 

LEO = Low Earth Orbit 

OLTARIS = On-Line Tool for the Assessment of  

  Radiation in Space 

SPE = Solar Particle Event  

I. Introduction 

he ability to affordably and sustainably mitigate the risks associated with exposure of human crews to space 

radiation is a major challenge in designing for human exploration of the Solar System beyond Earth orbit (BEO).  

Exposure of astronaut crews to the deep space radiation environments increase the risk of deleterious physiological 

effects such as radiation sickness and late-term effects, central nervous system damage, and increased incidence of 

debilitating or fatal cancers.  Current design and operational strategies for mitigating radiation-related risks include: 

1) the deployment of radiation monitoring instrumentation to enable a measured, balanced, real-time response to 

radiation events during human missions, and 2) the addition of “shielding” to spacecraft designs to protect the crew 

directly. Legacy approaches of each strategy, while valid in concept, do suffer from shortcomings in their current 

and past engineering implementations. NASA’s RadWorks Advanced Exploration Systems (AES) Project builds 

upon past lessons and advances real-world solutions to radiation risk mitigation through analysis, design, 

demonstrations and operational implementation on future missions.  

The RadWorks Project consists of two top-level elements. The first of these is the maturation of advanced, 

miniaturized radiation measurement technologies, or dosimeters. The second is the development of a radiation storm 

shelter which leverages the design of multi-functional habitat structures and logistics to minimize radiation shielding 

mass at launch.  This paper focuses on the second of these, the Storm Shelter. 
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The deep space radiation environment beyond the Earth’s magnetosphere results from the combination of 

galactic cosmic rays (GCR), solar particle events (SPEs), and secondary particles which are created during 

interactions between the charged ions in these environments and the materials surrounding the astronauts.  GCR 

radiation consists of charged particles which exist pervasively throughout the galaxy.  Some GCR particles are 

difficult to shield with practical amounts of shielding because of their high energies and the secondary particles 

which can be formed by their collision with shielding materials.  The rates of exposure associated with GCR are 

relatively low, but also extremely difficult to mitigate without large amounts of shielding (on the order of a few 

meters).  This limits acceptable mission durations until innovative solutions to the GCR problem are developed. In 

contrast to GCR, large SPEs are rare, short-lived (durations are measured in hours), high-exposure rate events.  

Fortunately, shielding materials (particularly those with high concentrations of hydrogen such as polyethylene and 

water) are effective at reducing astronaut exposure to these events because SPEs are made up primarily of low and 

medium energy protons.  Therefore, if adequate shielding is provided and astronauts receive sufficient warning to 

enter the sheltered area, the SPE risk can be managed through appropriate vehicle design.  

Adequate shielding could be provided by simply surrounding a vehicle with a large enough mass.  However, it 

is cost prohibitive to launch the mass necessary to shield an entire space habitat.  It is also undesirable to carry 

single-purpose shielding mass dedicated only to provide radiation shielding (i.e. parasitic mass) when logistics and 

subsystems necessary to support humans can provide sufficient shielding.  To address this design problem, the 

objective of the Radworks Storm Shelter is to design low parasitic mass, temporary SPE shelter concepts which 

reconfigure, redeploy, and/or reuse available logistics and subsystems to shield smaller areas within a habitat when 

an SPE occurs. The production of integrated shielding concepts with minimized system impact will feed into the 

specification of a Concept of Operations for managing the crew SPE exposures for exploration missions. The design 

effort will also provide valuable insight into how truly integrated vehicle designs can contribute to the mitigation of 

the GCR issue. 

This paper describes the process used by the Storm Shelter team to identify, analyze, and evaluate leading 

candidates for these SPE shelters and improve them through the creation of subscale and full-scale demonstration 

articles. Section II describes the identification of shelter options and the preliminary down selection process to the 

four primary concepts evaluated in FY’12, and Section III describes the pros/cons and operations associated with 

each of these concepts. Section IV outlines the radiation analysis used to determine the parasitic mass in Section V. 

Section VI describes the operational performance of each concept including deployment time. Section VII covers 

the decision analysis which led to a reduction of concepts being matured to two.  Finally Sections VIII and IX 

outline the conclusions from the study and the future work planned for FY’13.   

II. Design Space Exploration 

The RadWorks Storm Shelter team was charged with creating storm shelter designs applicable for a one year 

mission with four crew in the deep space radiation environment.  Each of these shelters was designed to be 

deployable by two crew in less than an hour and capable of housing astronauts for up to 36 hours. A brainstorming 

session was held December 2011 to generate a set of storm shelter alternative concepts which utilize or modify 

existing logistics items for protecting astronauts from the harmful effects of SPE radiation.  In particular, the 

objective was to propose innovative ideas compatible with space habitat design which could potentially achieve 

“zero” mass solutions while maintaining reasonable assumptions about use of available shielding materials.  The 

session resulted in the identification of four major parameters which characterized the design space: the sheltered 

area’s location/size, a basic shelter strategy, the choice of shielding materials, and a strategy of shelter deployment. 

Options from these categories (shown below) can be combined to form multiple SPE shelter alternatives.   

After formalizing this design space into a trade tree, the ten likely alternatives shown in Table 1were generated 

for a preliminary qualitative evaluation to reduce the number of concepts.  These alternatives fell into the following 

protection scheme categories: 1) pre-integrated waterwalls, 2) built-up waterwalls, 3) wearable shelters, 4) 

deployable shelters, and 5) built-up structures.  It was recognized that the optimal solution used in practice would 

likely utilize some hybrid combination of these methods (e.g., a wearable shelter in combination with a pre-

integrated crew-quarters derived waterwall), but since these final decision would be based upon the availability of 

protection materials and the scale of the shelter, only non-hybrid concepts were evaluated during FY’12.   
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 Various Shelter Configuration/Location Options 
• Surrounding habitat 

• Surrounding each crew quarters 

• Surrounding all crew quarters 

• Surrounding galley/group meeting area 

• Airlock shelter 

• Wearable shelter 

• Combination approaches 

 Shelter Strategies 
• Panels 

• Bricks 

• Soft goods storage 

• Cargo Transfer Bags (CTBs) (redesigned or 

coated) 

• Blankets 

• Water bags 

• Baffled tank walls 

• Blinds / louvers 

• Pre-integrated structure  

 Materials Choices 
• High density polyethylene 

• Carbon nanomaterials 

• Metal hydrides (e.g. LiH) 

• Other advanced materials 

• Potable Water 

• Grey/waste water 

• Water-ice 

• Repurposed CTBs 

• Trash  

 Deployment Methods 

• Pre-integrated / pre-deployed 

• Construction from panels/bricks 

• Moving of materials 

• Moving water bags 

• Water shift 

• Inflatables 

 

Table 1: Ten initially proposed shelter concepts 
Protection Scheme Category Shelter Concept 

Pre-Integrated Waterwall 
1) Pre-integrated waterwall for two person crew quarters 

2) Pre-integrated waterwall plus logistics stacking, multiple walls of main section 

Built-up Waterwall 

3) Built up waterwall for two person crew quarters 

4) Built up waterwall plus logistics, in main section 

5) Water bladder for two person crew quarters  

Water Bladder-based Wearable 6) Water bladder based wearable 

Built-up Structures 7) Build up of panels and logistics in the main section, (floorboards, CTBs, panels...) 

Deployable 

8) Deployable via release and pull into place, roller blinds, with pre-integrated ceiling/floor 

protection in the center core of the habitat 

9) Deployable via inflation, fabric with pre-integrated ceiling/floor protection in the center core 

of the habitat 

10) Deployable via elastic forces (panel/fabric tent) in main section  

 

 A decision analysis-based prioritization of the concepts was implemented to reduce the number of concepts 

developed to four concepts which would be further developed during the FY’12 design cycle.  Assuming similar 

levels of radiation dose reduction for all concepts, the decision analysis process utilized three figures of merit to 

make the selections: 1) the anticipated mass of the concept, 2) the anticipated shelter assembly time, and 3) the level 

of crew functionality within the habitat. These figures of merit were weighted with a heavy emphasis on reduced 

mass and summed to determine the overall preference between the 10 alternative shelter concepts. Finally, the 

results were discussed and similar concepts were combined to arrive at the four FY’12 SPE shelter concepts. These 

four concepts will be analyzed for integration into the Habitat Demonstration Unit (HDU)
1
, which is a NASA owned 

analog used for testing proposed technologies and operations for future deep space missions.   

III. Concept Definition 

The decision analysis process resulted in the following concepts being selected for FY’12 demonstration based 

upon the rationale described: 

1) Water bladder Based Wearable:  Highly rated and captures a personal protection concept. 

2) Deployable Blind Concept:  Not as highly rated as the other three but was the top rated concept in the 

“Deployable” category. This concept evolved to an approach which was not only deployable within the 

habitat, but has potential of being deployed from the habitat to other exploration elements.   

3) Pre-Integrated Water Wall for Two Person Crew Quarters:  The top rated concept amongst the team which 

captures active water wall technology. 

4) Build-up of Panels and Logistics in the Main Section:  Moderately rated but captures a non-water wall 

solution. 

Each of these concepts was further developed with a concept design, radiation analysis, deployment scenarios, and 

parasitic mass estimate to inform future decisions to futher reduce the number of concepts which would be 
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developed using full scale mockups. This section of the paper will describe the basic premise of the concept design 

including a descriptions of potential advantages and challenges to implementation.  

A. Wearable Individual Shelter 

In order to minimize the material necessary for protecting individual crewmembers in the existing crew 

quarters, a wearable protection strategy to augment crew sleeping bags with water bladders or logistics was 

proposed. By protecting crew members directly, the surface area required for protection is minimized which also 

minimizes the mass of the protection medium. By using sleeping bags in existing crew quarters, work and sleep can 

be accommodated in a space proven to be habitable and productive within the spacecraft for the duration of an SPE. 

Additionally, sleeping bags are portable, so protection could be maintained during limited crew translation within 

the habitat. 

Two approaches to wearable concepts are included in the storm shelter protection options: 1) a sleeping bag 

with an integrated water bladder and 2) a sleep restraint with a mesh of food pouches and/or Heat Melt Compacted 

(HMC) bricks
2,3

, which are created from compacted trash.  The water bladder sleeping bag concept shown in Figure 

1 seeks to leverage the existing sleeping bag/restraint system available to the crew and also the available 

contingency life support water to reduce the delivery of additional mass. The bladders would be pre-integrated into 

the sleeping bags and could be either pre-filled or filled as needed for an SPE. A detachable, water-filled hood 

would be added to this sleeping bag to provide protection to the head and neck (thyroid). Baffles within the bladder 

are provided to maintain desired shape when filled. The bladder within the sleeping bag covers the body from the 

head to the knees maintaining complete protection of blood-forming organs. 

Since the sleeping bag/bladder concept would already be located and used in the crew quarters, the deployment 

operation would consist of filling the bladder with water.  The bladder can be either pre-filled or filled-on-need.  

Pre-filling the bag would significant reduce time to deploy the bag for SPE protection as all would be required is for 

the crew member to translate to the quarters and don the filled sleeping bag.  If the bag is not filled until an SPE 

event has been identified, then the crew member would have to take the bag to a faucet location and fill the bag prior 

to donning it.    

Key challenges to the water bladder-based protection strategy include mobility/comfort of a crew member and 

how fill times would impact the deployment time. Thermal and mobility issues associated with these bladders will 

have to be investigated.  Water provides a heat sink drawing heat out of the body unless heated, insulated, or 

designed such that it doesn’t have significant surface area contact with a crewmember. Conversely, the thickness 

and close confinement around the body may generate heat requiring additional cooling, such as ventilation.  The 

comfort/mobility of the crew will be affected if the amount of water required for protection requires a thickness that 

tends to immobilize crew body movements (the “Michelin Man” effect).   The other issue with the water-filled 

concept is the fill rate. ISS faucets have a water flow rate of 500 mL/min (about 1/10 the speed of Earth faucets) 

which is intended for filling drinks/food and washing. If this flow rate is imposed upon the wearable concepts, each 

sleeping bag could take more than 5 hours to fill as opposed to 31 min for a typical Earth faucet.   

 

 
Figure 1 - Wearable Option 1 - Water bladder in sleeping bag 
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Figure 2 - Wearable Option 2 - Sleep restraint with food pouches/compacted trash bricks 

 

Figure 2 shows a sleeping system dependent upon food pouches and/or compacted trash bricks for protection. 

This could be used in combination with or in lieu of a water-based system. In this concept, pouches of food and 

compacted trash bricks can be pre-assembled into a netting of rows or sheets using straps and Velcro for fast 

deployment onto a sleep restraint system. This system would be deployed when alerted of an SPE. A detachable, 

water-filled hood would be added to this sleeping bag to provide protection to the head and neck (thyroid).  As with 

the sleeping bag/bladder concept the protection covers the body from the head to the knees. 

The food pouches would be preassembled and packaged such that the system could easily be pulled from 

storage and quickly attached to the sleeping bag/restraint.  The assumption is that the food used would be 

predominantly contingency food, but the packaging would be arranged so that food pouches could be exchanged, 

used or replaced with the green bricks as needed. 

Key challenges to a logistics/trash-based protection system are similar to the water bladder system: thermal 

control (overheating only) and potentially large thicknesses of the protection material causing mobility reduction. 

The decreased protection efficacy of food and trash bricks may result in thick, bulky layers of protection material, 

which can cause productivity and mobility issues. While this concept does not require filling a bladder with water 

(except for the hood), the full complement of food pouches/bricks must be in place for adequate protection.  Using 

contingency food can reduce the need for maintenance of the food pouches.  Otherwise operations would require a 

strict maintenance of food and trash to ensure protection is at hand throughout the duration of the mission. 

B. Deployable Shelter Concepts (Individual and Group Shelters) 

Deployable concepts feature a quick structural deployment utilizing available materials (e.g., logistics, water, 

trash, etc.) to protect a region(s) of a habitat interior. Initial concepts investigated include “blinds” of protection 

material which fold out of ceiling and wall locations, “cargo netting concepts” which use netting to arrange logistics 

carried in Crew Transfer Bags (CTBs), and concepts utilizing unfolded CTB and Heat Melt Compacted (HMC) 

bricks
2,3

 and/or food provisions to provide a quickly deployable SPE protection shelter. Kinematic structures such as 

pop-up ribbing to support a radiation protection cover material were also discussed.   

During FY’12, two deployable concepts were pursued for further analysis: 1) a deployable individual shelter 

leveraging contingency water and logistics and 2) a deployable group shelter focused on utilizing only logistics and 

minimizing parasitic mass. Figure 3 shows the features of the individual deployment shelter concept. A two-part 

hinged assembly water containment system is proposed for storage of the contingency life support water. Each half 

holds shelter frame supports which assemble onto the unfolded assembly to support positioning of logistics 

elements.  HMC bricks, CTB’s, food storage etc. could serve as the protection medium and could be pre-integrated 

into sheets which could be attached to the deployed shelter framing. 
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Figure 3 - Deployed water containment system for individual astronaut protection 

 

Key challenges to this concept are the logistics management issues and space management challenges of 

deploying four shelters. Maintaining the sheets of logistics with appropriate levels of protection as logistics are 

consumed requires logistics management software and strict logistics maintenance practices. The other issue is that 

four deployed shelters take up the majority of the open space within the habitat. Shape and deployment location will 

be traded in future iterations. 

The group deployment shelter concept investigated features a frame of aluminum which is used to create an 

attachment structure for large panels of CTBs as shown in Figure 4. The advantages of this concept are that it is 

relatively easy to deploy and may have a smaller surface area than individual protection strategies. With the use of 

lightweight structural materials, the parasitic mass of this solution can be attractively low. The greatest challenges to 

this concept are maneuvering the large amounts of logistics and maintaining the logistics in the sheets to provide 

adequate levels of uniform protection. Another potential challenge for this concept is ensuring that the logistics 

alone can provide sufficient protection for the worst case SPEs. 

 

Deployable aluminum 
frame

Unfolded in sheets to 
construct shelter

CTBs removed from 
storage

Placed upon frame to 
protect 4 crew

Alternate lightweight 
construction materials 
can be traded

Shapes of CTB sheets can 
be catered for best fit

 
Figure 4 - Deployed logistics containment system for group protection 
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C. Crew Quarters – Derived Waterwall Shelter Concept 

Crew quarters-derived concepts seek to leverage a proven habitable volume occupiable by crew for the duration 

of a SPE by augmenting crew quarters structure with an integrated waterwall functionality. Figure 5 shows a single 

ISS-type crew quarter which has been redesigned to be constructed from 2-inch thick structural panels which also 

provide containment for contingency life support system water. To preserve the inner mold line of the original 

design, wall thickness increases are applied outward. These walls and/or individual wall panels can then be filled 

and/or drained on an as needed basis for radiation protection. Potentially making the waterwalls thicker to 

accommodate more system water could also be an efficient solution for habitat designers to consider.  

 

 
Figure 5 - Buildup of crew quarters, including bump out and sleeping restraint 

 

Figure 6 shows two crew quarters positioned in a loft concept 

which includes additional recently proposed loft system hardware.  

Either vertical or horizontal integration of the crew quarters could be 

demonstrated. An additional savings could be provided if the crew 

quarters can be grouped together, sidewall to sidewall. The adjacent 

sidewall would not have to be a radiation shield and the mass of it 

would not count in the radiation protection mass penalty calculation.    

From a radiation protection perspective, placing the crew quarters 

as close to the center of the habitat as possible is useful because it can 

provide space between the outer wall of the habitat and the outward 

wall of the crew quarters.  The arrangement in Figure 7 shows a 

smaller crew quarters (no bump out) but is likely not feasible based on 

presumed loft hardware that may exist in the HDU at the time of 

concept demonstration.  

The major advantage of crew quarters-based shelters is that the 

space within the crew quarters has been designed and proven for 

durations of occupation similar to the length of an SPE. Crewmembers 

are accustomed to working for prolonged periods within their crew 

quarters. Another advantage is that walls could be permanently filled 

to provide some degree of continuous protection for crew.  

Another potential advantage of the integrated water wall concept 

is the increased synergy with the work of related projects into the 

development and demonstration of multi-functional panels for habitat 

structures
4
. The honeycomb “smart panels” being developed 

incorporate self healing features and could incorporate the radiation 

waterwall feature. For crew quarters waterwall concepts, the combined 

multi-layers of Surlyn, PVC, Kevlar, aluminum, and fiberglass epoxy 

would be adjusted to deal with potential issues associated with crew 

quarters waterwall design. These issues include corrosion, 

maintenance, and fill/drain requirements.    

Figure 6 - Centralized crew quarters  

Figure 7 - Centralization of reduced size 

crew quarters 
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D. Reconfigurable Structure Group 

Shelter 

The reconfigurable structure group 

shelter features the incorporation of dual 

use structure and the repositioning of 

logistics to reduce parasitic mass of the 

shelter.  Within the HDU, this approach 

leverages multiple structural floor panels 

that can quickly be removed without 

tools and assembled together to construct 

a radiation shelter.  These flooring panels 

are attached to sub-flooring structure 

using “no-tools” fasteners, ensuring that 

these panels can quickly be removed and 

repositioned around a centralized shelter 

location. There they can serve as 

shielding if filled with water and as a 

support structure/attachment location 

for logistics relocated and repurposed as 

shielding. Figure 8 shows the HDU Loft 

and Main regions with these “dual-use” 

floor panels highlighted in blue, and the completed shelter region in the Loft and Main sections of the HDU on the 

upper right, and the shelter after adding logistics on the lower right. Figure 9 shows a possible modification to an 

existing honeycomb structure from another NASA project which might be able to serve as the repurposed flooring 

system.  

 
Figure 9 - Design features for a .4 inch waterwall panel, .75 inch overall height 

 

The reconfigurable structure group shelter concept described here has good potential to be a low mass solution. 

Using existing logistics for shielding further enhances the natural radiation protection efficiency coming from being 

centrally located within the habitat. The challenges to implementing this concept are the deployment time, potential 

for leakage of the panels if using them as waterwalls, and the challenge of recovering the water after the event.  

IV. Radiation Analysis 

A. Radiation Analysis Process 

A radiation analysis of each shelter concept described above was performed to determine the amount of 

protection material needed to reduce astronaut radiation exposure (described in detail in Ref. 5) .  The first step of 

the radiation analysis is to develop a CAD model to represent the habitat structure, which is an in-space adaptation 

of an existing Habitat Demonstration Unit (HDU) Computer-Aided Design (CAD) model.  This habitat model is 

then populated with consumables (food, water, cargo, etc.) and equipment (life support equipment, medical suite, 

exercise stations, etc.) required to support four crew for a year-long mission, as shown in Figure 10.  CAD models of 

each of the shelter concepts are then analyzed within this outfitted habitat model to determine the thickness of the 

Figure 8 - Reconfigurable structure group shelter: Loft and Main 

region (left), completed configuration (upper right), with logistics 

added (lower right) 

Loft A

Main 
Sect. B

Loft B

Main 
Sect.  A
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shielding material necessary to achieve two protection levels: a threshold of 50% reduction and a goal of 70% 

reduction.  This percent reduction in exposure is evaluated by calculating the effective dose for a 50
th

 percentile 

female astronaut in the habitat in its normal (unprotected) configuration to establish the baseline exposure and then 

performing the calculation for the female astronaut within the habitat reconfigured to include the shielding concept. 

The 50% female astronnaut is an industry standard in radiation analysis chosen to increase modeling conservativism 

because females are more radiologically sensitive than males.   

 

 
Figure 10: Construction of HDU radiation CAD model 

 

Effective dose is a measure of whole body exposure. It is determined by calculating the dose equivalent at a 

large number of points in the body and taking a weighted average of these values utilizing tissue weighting factors to 

account for the varying sensitivity of the various organs and tissues. In order to determine the dose equivalents, 

points representing the body of the female astronaut placed within the CAD models of the habitat and shielding 

concepts are ray traced with scripts utilizing the Sigmaxim SmartAssembly™
6
 tool set, an analysis add-on for the 

Pro/Engineer CAD Software.  Based upon the total thicknesses of aluminum, polyethylene, and tissue observed 

along each ray, a dose equivalent along each ray is computed using the International Commission on Radiological 

Protection (ICRP) Publication #60 quality factors
7
 and integrated to determine the dose equivalent at each point in 

an organ. After the dose equivalents at all the points in the organ have been found, the mass-averaged dose 

equivalent for the organ is computed. Then once all the organ dose equivalents are found, the effective dose is then 

computed using the National Council on Radiation Protection and Measurements (NCRP) Report #132 tissue 

weighting factors
8
. 

This process is carried out using several radiation analysis tools (geometry algorithms, High charge (Z) and 

Energy TRaNsport code (HZETRN)
9,10

, effective dose scripts) developed for the On-Line Tool for the Assessment 

of Radiation in Space (OLTARIS)
11

 to calculate the effective dose. The Female Adult voXel (FAX) phantom
12

 was 

used to model the female astronaut. The  CAD models for three 50
th

 percentile male astronauts were also included in 

the habitat to account for the protection they would provide the female astronaut.  For a more complete explanation 

of radiation analysis using OLTARIS with phantoms see Ref. 11 or the OLTARIS website 

(https://oltaris.larc.nasa.gov/help_documentation/OLTARIS_phantom_process_v2.pdf).  

In addition to the habitat geometry, outfitting and shielding materials, the effective dose is also driven by the 

choice of the SPE. For this effort, the design basis SPE chosen is referred to as the Xapsos 95
th

 percentile event. It 

was calculated using a tool developed by Dr. Michael Xapsos to produce probabilistic proton environments due to 

solar particle events for missions with durations of one year or more
13

. For an input mission duration and a 

confidence level, the tool outputs integral proton fluences for energies ranging from 1 MeV to 300 MeV for both the 

total SPE fluence that would occur during the mission and a “worst case” SPE spectra.  The 95% confidence level 

chosen represents the confidence that the total SPE fluence would not be exceeded. The total integral proton fluence 

spectra was extrapolated to cover the energy range from 0.01 MeV to 2,500 MeV, and then the differential proton 

https://oltaris.larc.nasa.gov/help_documentation/OLTARIS_phantom_process_v2.pdf
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spectrum shown in Figure 11 was calculated. More details on the selection of this SPE over the others shown in the 

figure can be found in Ref. 5. 

As mentioned previously, the effectiveness of a shelter concept is measured by the percent reduction in 

effective dose over a baseline effective dose in the habitat with no additional radiation protection.  The two baseline 

astronaut locations used to set this baseline effective dose are shown in Figure 12, one in the crew quarters and one 

central in the main section.  The effective doses for each are shown for each of the investigated SPE spectra in Table 

2. It is clear that the choice of SPE model has more impact than the location of the baseline astronaut.  The effective 

dose values for shielding concepts in the crew quarters are compared to the baseline value of 450 mSv and effective 

dose values for shielding concepts in the main section are compared to the baseline value of 361 mSv. 

  

 

 

 

 

 

Table 2: Baseline astronaut exposure in shelter locations for various SPEs 

 Effective Dose (mSv) 

Aug. 1972 

(King) 

Aug. 1972 

(Band) 
Xapsos 95% Sept. 1989 

(OLTARIS) 

Sept. 1989 

(Band) 

Crew Quarters 311 190 450 106 102 

Main Section Center 225 139 361 89 82 

B. Shelter Concept Radiation Analyses Results 

This radiation analysis procedure is used to assess trade variations of each of the shelter concepts.  Table 3-6 

show the shielding thicknesses and total shielding masses for each of the shelter concepts at various deployment 

locations in the habitat and for various analysis assumptions. Ranges in the thickness data indicate the ranges of 

thicknesses required for either multiple individual shelter units simultaneously deployed or multiple locations of 

crew within a group shelter. Based on Table 3, it appears possible to create a wearable concept, 2-3 inches thick that 

would meet the 50% exposure reduction requirement in either deployment location, but a wearable concept that 

would meet the 70% protection level would probably be too thick to meet mobility requirements. In the analysis of 

the deployable individual shelter concept, the shielding materials (food and HMC bricks) are modeled as water and 

aluminum to determine bounds on the thickness and mass required to achieve the dose reductions. The shelters are 

positioned as shown in Figure 13. Based on the results shown in Table 4, it appears to be possible to design a 

deployable concept of this type that will meet either the 50% or the 70% protection level, but the 70% protection 

level may require more food and/or HMC bricks than are present on the habitat at some points during the mission 

duration. 

 

Table 3: Radiation analysis results for wearable, sleeping bag derived shelters 

 
Water Wall Thickness, in Total Mass for 4 Astronauts, lbm 

50% 70% 50% 70% 

Wearable Shield in Crew Quarters 2.1 5.0 1527 3636 

Wearable Shield in Main Section 2.8 6.1 2036 4436 

 

 

Figure 11: Solar particle event spectra 

Figure 12: Placement of astronaut within HDU radiation CAD 

model for baseline exposure determination 
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Table 4: Radiation analysis results for deployable individual shelter 

 
Food/Brick Layer Thickness, in Total Mass for 4 Astronauts, lbm 

50% 70% 50% 70% 

Modeled as Water 0.52-0.92 3.43-4.42 627 3693 

Modeled as Aluminum 0.27-0.50 2.14-3.01 905 6520 

 

Table 5: Radiation analysis results for individual crew quarters based shelters 

 
Water Wall Thickness, in Total Mass of Water, lbm 

50% 70% 50% 70% 

Crew Quarters in Original Position 2.7 7.7 3119 8942 

Crew Quarters Moved Inward 0.49-0.84 4.95-5.12 676 5827 

Astronauts Doubling Up 0-0.82 3.50-4.93 379 2656 

 

Table 6: Radiation analysis results for reconfigurable structure group shelter leveraging available structure 

 
Water Wall Thickness, in Total Mass of Water, lbm 

50% 70% 50% 70% 

Panels Only 1.04-1.65 4.04-5.00 1696 5785 

Panels Plus Logistics 0 1.67-2.85 0 2677 

 

Three scenarios are evaluated for the crew quarters concept.  In 

the first, the four crew quarters were left in their original positions 

abutting the exterior walls and the thickness of water walls built into 

the crew quarters walls were varied uniformly.  In the second, the four 

crew quarters were repositioned closer to the center of the habitat and 

surrounded by logistics and cargo, and then the thickness of water 

walls built into the crew quarters walls were varied.  The repositioned 

crew quarters are shown in Figure 14.  In the third scenario, all four of 

the crew quarters were repositioned, but only two of the crew quarters 

were outfitted with water walls and two astronauts were placed in each 

of the augmented crew quarters for the duration of the SPE.  Based on 

the results in Table 5, it appears to be possible to create a water wall 

system for the crew quarters in their original position that would meet 

either the 50% or the 70% protection levels, but the large quantity of 

water needed for the 70% protection level may be more than is 

available.  Moving the crew quarters to a more central location and 

surrounding them with onboard materials significantly reduces the 

amount of water required to meet each of the protection levels. 

Providing water walls in only two of the crew quarters and having 

them “double up” also reduces the amount of water needed, especially 

for the 70% protection level. 

Based on the analysis of the reconfigurable structure group shelter 

(shown in Figure 15) , it appears to be possible to create a storm shelter 

using the floor panels that will meet either the 50% or the 70% 

protection levels, but the large quantity of water needed to meet the 

70% protection level may be more than is available.  For the scenario 

in which logistics surrounded the shelter, it may be possible to reach 

the 50% protection level without utilizing water walls and the quantity 

of water needed for the 70% protection level is smaller.  It should be 

noted, however, that this evaluation assumed a floor panel thickness of 

1.59 g/cm
2
 without water.  Further investigation is required to 

determine whether this is sufficient for structural concerns to validate 

this assumption. 

  

Figure 13: Location of individual 

deployable shelter concepts within HDU 

radiation CAD model 

Figure 14: Location of crew quarters 

centric shelter concepts within HDU 

radiation CAD model 
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V. Parasitic Mass Estimation 

The results in Table 3-6 highlight the total mass of the shielding 

material required, but the key figure of merit is the amount of “parasitic 

mass” or single-purpose shielding mass manifested only to provide 

radiation shielding.  Parasitic mass primarily comes from two sources: 

1) basic structure/hardware necessary to support or implement a 

protection strategy and 2) protection materials which serve no 

alternative purpose than radiation shielding.  Any of these items which 

are also utilized for any non-radiation protection purpose are not 

counted as parasitic mass. For example, water mass is not considered 

parasitic unless is exceeds the 1300 lbm of contingency water which is 

assumed for the mission.  Any additonal water which is included to 

increase radiation protection is counted as parasitic, even though it may 

be useful in an emergency if sufficient access to it is provided.  

Similarly, food packets/bricks are not considered parasitic unless they 

exceed the quantity available for the mission. 

The parasitic mass is estimated for each concept to determine which concepts more effectively leverage the 

habitat layout or available logistics and consumables.  Additionally, the “raw shielding” mass that would be required 

if polyethylene panels are used to construct a fully parasitic shelter around the central shaft (Figure 15) is also 

estimated for comparison (this location had the lowest parasitic mass of ones investigated).  Table 7 summarizes the 

parasitic masses required to achieve the effective dose reductions in each of these cases.  Detailed breakdowns of 

how these parasitic masses are estimated are included in Table 11 – 20 in Appendix A.  The majority of the parasitic 

mass in the wearable concept comes from the water which exceeds the assumed contingency water quantity. 

Because the deployable individual concept is designed with a fixed size water wall which does not exceed the 

contingency water mass allotment, there will be no parasitic water mass. The remaining five sides of the deployed 

enclosure are assumed to be shielded with HMC bricks which also are not declared to be parasitic. The brick 

manufacturing equipment itself is non-parasitic as it is assumed to be required hardware for the purpose of garbage 

compaction regardless of the use of its created product.  Because of these assumptions, the parasitic mass for the 

deployable individual concept is constant between conditons of 50 or 70% radiaiton reduction.   

 

50% Effective Dose 

Reduction 

70% Effective Dose 

Reduction 

Concept Parasitic Mass, lbm Parasitic Mass, lbm 

All-Polyethylene (Baseline Mass)  1500 4000 

Wearable  805 2577 

Deployable Individual Shelter  784 784 

Individual Crew Quarters (4 CQs) 246 4763 

ReconfigurableStructure Group Shelter (Logistics) 209 2113 

ReconfigurableStructure Group Shelter (No Logistics) 1619 5703 

 

The crew quarters concept is similar to the wearable in that its parasitic mass is dominated by parasitic water, 

but moreso because of the larger surface area required for equivalent protection. Because of the uncertainty around 

the acceptability of a two person crew quarters derived shelter,  the four person variant is used for the downselection 

process. It should be noted that if the acceptability of the two person crew quarters derived shelter is validated, the 

parasitic mass reductions are ~120kg for the 50% radiation reduction case and ~3300 kg for the 70% radiation 

reduction case.  The reconfigurable structure group shelter which does not leverage logistics is also driven by the 

amount of parasitic water required. However, if the group structure concept is designed to leverage the available 

logistics, the parasitic water (and the resulting total parasitic mass) descreases substantially. 

  

Table 7- Parasitic mass summary for four crew members 

 

Figure 15: Location of crew in 

reconfigurable structure group shelter 

within HDU radiation CAD model 
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VI. Deployment Time Estimation  

Another primary figure of merit used to compare the shelter 

concepts is the deployment time required to setup the shelter once a SPE 

is identified. This time is estimated through the development of an 

operational timeline, which outlines the required tasks to setup the 

shelter including identification of if tasks must be performed in series or 

parallel. These timelines are summarized here in Table 8. 

A. Wearable: 

 The sleeping bag wearable concept is assessed in two different 

operational scenarios.  The first assumes the sleeping bags are prefilled 

with water prior to identification of a SPE, and the second assumes each 

sleeping bag must be filled with water from the habitat life support 

system upon identification of a SPE.  For the prefilled scenario, the crew person in the loft proceeds directly to his 

crew quarters to don the sleeping bag and hood protection.  Some timing cushion is provided to allow for translation 

of astronauts through the central corridor from the other locations to their respective crew quarters.  The total time 

estimated to implement this solution is 15 minutes.  This deployment strategy assumes the water used for protection 

is primarily contingency water and is not required for on-demand access by the habitat’s life support system.  

The non-prefilled wearable operational assessment assumes the water bladders used for protection would have 

to be filled from a water source prior to donning for the SPE.  Adequate water is assumed to be available in the 

primary life support system and that four ports may be simultaneously utilized to fill each sleeping bag concurrently. 

The total time estimated to implement this solution is 36 minutes.  

B. Individual Deployable Shelter: 

The individual deployable shelter concept selected for assessment consists of removing an existing piece of wall 

or table that is constructed using the stowed deployable structure. The back side of this device is pre-filled with 

contingency water.  The deployable shelter is unfolded and the skeleton structure erected. This structure can then be 

covered with a pre-filled flexible wall made of pockets of food or HMC bricks, where the mix is determined by how 

far into the mission duration an SPE occurs. It is assumed in this operational approach that all four deployable 

shelters are assembled simultaneously by each astronaut.  The total time estimated to implement this solution is 26 

minutes. 

C. Crew Quarters-Derived: 

The crew quarters waterwalls are also assumed to be pre-filled with contingency water.  This is the simplest 

operational scenario as the crewmembers just have to find their way to their respective quarters to prepare for the 

SPE. A buffer of time to allow each crew member to make that move without interfering with another crew member 

is provided.  The total time estimated to implement this solution is 7 minutes. 

D. Reconfigurable Structure Group Shelter: 

Utilizing repositioned structural panels to create a group shelter is a multistep process.  To implement this 

concept, crew members are assigned simultaneous tasks including removal of structural/protection panels from a 

habitat floor or wall and positioning these panels around an existing central framework to create a protective 

enclosure. The panels are considered pre-filled with contingency water. There is considerable amount of assembly in 

this approach, but because the crew is working on parallel tasks the deployment time is only 27 minutes. If instead 

of utilizing pre-filled water based panels, normal structural panels are scarred as a structural framework for the 

attachment of logistics, the deployment time increases substantially to ~60 minutes.  

VII. Concept Comparisons – Decision Analysis  

A decision analysis process was implemented to down select between the concepts based upon the performance 

of several figures of merit which map directly to shelter design requirements (listed in Appendix C).  These figures 

of merit include quantitative measures such as parasitic mass and deployment time in addition to several qualitative 

measures capturing less measurable factors such as habitability, functionality, and complexity. The proposed shelter 

concepts were compared through calculation or qualitative assessment of the relative performance within each figure 

of merit using the decision analysis software program, “Logical Decisions”
14

. This raw score data feeding the 

comparison is shown in Table 9 and Table 10 for the 50% and 70% dose reduction design cases. These raw scores 

Concept  
Deployment 

time, minutes 

Wearable Prefilled 15.0 

Wearable Fill as Needed 36.0  

Deployable Individual 26.0 

Individual CQ 

Waterwall Prefilled 
7.0 

Reconfigurable Structure 27.0 

Reconfigurable Structure 

& Logistics Adjustment 
60.0 

Table 8: Concept deployment for 

50% dose reduction shelter variants 
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are converted to the same units through the use of utility functions, which convert measured values to non-

dimensional relative performance measures with values between 0 and 1 representing zero and full utility, 

respectively.  Appendix B Table 22 shows how a raw score such as percent mass savings or deployment time is 

assigned a utility value thru a utility function.  

 

Table 9 - FOM ratings for the 50% radiation reduction condition 

 
 

Table 10  - FOM ratings for the 70% radiation reduction condition 

 
 

The weighted summation of all FOM utility values provides a concept’s integrated utility rating, or composite 

score, which can be used to distinguish between concepts. The weightings are used to establish the relative 

importance of the FOMs reflecting designer preferences. Four likely preferences were used to create four possible 

weightings (Appendix B Table 21): 

1) All FOM’s rated of equal importance 

2) Baseline FOM weighting 

3) Mass Savings Emphasis (minimization of protection mass) 

4) Deployment Time Emphasis (minimization of deployment time) 

Using multiple weighting sets provides additional rigor with respect to concept selection. If the same concept(s) 

always appear at the top of a ranking despite the ratings set chosen, it is a more programmatically robust selection. 

For the Baseline FOM weighting, note that three requirements are given zero importance. This is not because they 

are not important in general, but because they are not important as a discriminator between concepts. The Mass 

Savings and Deployment Time weighting sets then provide more value to concepts which minimize mass or 

deployment time respectively. 

Appendix B Figure 16 through Figure 23 show the shelter concept rankings resulting from each of the four 

weighting sets and each of the two radiation reduction conditions, 50% and 70%.  For example, it can be seen in 

Appendix B Figure 16 that the crew quarters waterwall concept derives the most overall utility assuming an equal 

FOM weighting for the case of 50% radiation reduction.  

Some trends that can be observed from the integrated final utility scoring are: 

 In general, for all weighting sets and under multi criteria consideration, crew quarters protection appears as the top 

ranked concept 

 For 50% radiation reduction, prefilled wearables are the second most favored concept in general. 

protects 4 

astronauts

habitability deploy in less 

than 60 

minutes

added mass % of 

baseline protection

design for ops 

in 1g env.

integrates with 

FY14 HDU

facilitates egress 

during an SPE

deployable by 

2 persons or 

less

Wearable Prefilled 4.0 0.0 15.0 64 Yes Yes 0.0 1.0

Deployable 4.0 0.6 26.0 20 Yes Yes 0.5 2.0

Reposition Panels 4.0 0.6 27.0 143 Yes Yes 0.7 2.0

CQ Waterwall 

Prefilled

4.0 1.0 7.0 119 Yes Yes 0.9 1.0

Wearable Fill as 

Needed

4.0 0.4 72.0 64 Yes Yes 0.0 4

Reposition Panels 

and Logistics 

Adjustment

4.0 0.6 60.0 53 Yes Yes 0.6 2.0

Adjustment 

protects 4  
astronauts 

habitability deploy in less  
than 60  
minutes 

added mass % of  
baseline protection 

design for 
ops in 1g 

integrates with  
FY13 HDU 

facilitates egress  
during an SPE 

deployable by  
2 persons or  

less 

Wearable Prefilled 4.0 0.4 15.0 54 Yes Yes 0.8 1.0 
Deployable 4.0 0.6 26.0 52 Yes Yes 0.5 2.0 
Reconfigurable Struct. 4.0 0.6 27.0 108 Yes Yes 0.7 2.0 
CQ Waterwall  
Prefilled 

4.0 1.0 7.0 16 Yes Yes 0.9 1.0 

Wearable Fill as  
Needed 

4.0 0.4 36.0 54 Yes Yes 0.8 4 

Reconfigurable  
Structures & Logistics  

4.0 0.6 60.0 14 Yes Yes 0.6 2.0 

environment 
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 There is no change in concept ranking order for equal FOM weighting vs. Baseline FOM weighting for either the 50% 

or 70% radiation reduction cases. Though there is difference in going from the 50% to the 70% condition. 

 Wearables drop to mid to low ranking for the 70% radiation conditions. 

 For 70% radiation reduction, individual deployables are the second most favored concept. Note this is tempered by the 

fact that HMC bricks were not used for the crew quarters option and a large amount of water is parasitic for the case of 

70% radiation reduction. 

 For a mass savings only weighting set, in the case of 50% radiation reduction, the reconfigurable structures and 

logistics approach is best (Figure 20 red bar only)  

 For a mass savings only judgment, in the case of 70% radiation reduction, the individual deployable approach is best 

(Figure 21 red bar only)  

 Filling wearables on an as needed basis is not an attractive option. 

The use of the decision analysis process is useful for group discussion and understanding of each protection 

mechanism’s pros and cons from a system viewpoint.  Based upon the results, the crew quarters-derived shelter 

concept has consistent merit and should be investigated in future work.  The deployable concept, despite achieving 

fairly good ratings, is considered somewhat similar to a crew quarters approach without the inherent habitability 

advantages a crew quarters.  However, the deployable concept also shows the advantage possible with incorporating 

HMC bricks and food for protection in crew quarters-derived concepts to reduce the amount of parasitic water 

required.  The reconfigurable structures approach was somewhat poorly rated, but is unique in that it demonstrated 

the merit of a single protection region for the full crew.  The wearable approach, which was well rated for the 50% 

radiation reduction condition, is seen as a useful means to provide augmentation to other concepts and short duration 

mission situations.   

VIII. Conclusions  

In summary, several viable concepts were identified and assessed to protect astronauts from SPEs. 50% and 

70% reductions in effective dose over an unprotected habitat were achieved with practical amounts of shielding 

leveraging available logistics and consumables to provide reasonable parasitic masses. Several additional 

conclusions from this work include: 

 The development of mass-efficient, multifunctional elements that facilitate the deployment, utilization, and disposition 

of a shelter with sufficient shielding properties is an enabling technology for long duration space exploration beyond 

Earth orbit.     

 The decision analysis tool allows the decision maker to determine sensitivity of selection ranking to figure of merit 

importance, or changes in figure of merit ratings. A selection process has been demonstrated to quantify storm shelter 

performance from a system level viewpoint. Replications of this process may require resetting of FOMs, weightings, or 

alternatives to be used on additional habitat elements not considered here, but should hold as an effective assessment 

tool.  

 Water shielding is non-parasitic only if the water can be used, at least in contingency if not in daily living. To be 

useable as non-parasitic the water must be extractable from the water wall such as by being plumbed into the existing 

water system, or by the water wall segment having a positive expulsion device.  

o For assumed conditions, 30 day supply – 1300 lbm contingency water, water wall solutions were 

advantageous if the radiation requirements were not severe, or if logistics also assist in shielding.    

o In conditions requiring moderate radiation protection requirement, the wearable option may be sufficient as it 

easily can hold the required contingency water.  

o If only contingency water is used for radiation shielding, the water container should simply be one that is of a 

bladder nature such that it can be manually drained.  

 In comparison to water, HMC brick shielded designs were not considered parasitic.  As a result, conditions which 

require large amounts of shielding water (e.g., 70% radiation reduction) are biased on a mass savings basis towards 

HMC bricks. However HMC bricks are not available early in the mission timeline. It was assumed food packets or 

other logistics packages would have to be available for pre-placement in a radiation shield which will over mission time 

transition to HMC brick coverage. 

 Recommendations for Habitat Design and Use: 

o In general for deep space habitat design, keep crew surrounded by logistics and element systems, Ex: Crew 

quarters down the center of a cylinder with logistics surrounding in an annular manner. 
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o If using HMC brick type solutions, is it feasible to keep brick dimensions and food packet dimensions of 

similar nature (or perhaps of an even multiple) such that food can easily be used for radiation protection until 

utilized when it is then replaced by bricks.  

 Future collaborations with other habitation subsystems are critical for implementing low mass solutions to deep space 

habitation challenges such as SPE radiation protection. 

IX. Recommendations and  Future Work  

The following concepts are being carried forward into FY ’13: 
 Develop a full scale model of a crew quarters waterwall protection mechanism to be incorporated into the waypoint 

DSH design.  

 Develop a full scale model of a centralized storm shelter constructed from dual use panels and reconfigured logistics to 

be incorporated into the waypoint DSH design. 

 Maintain the wearable approach as a possible demonstration item for augmentation of the two primary concepts 

selected. 

There is a need to increase each of these shelter concepts’s definition with respect to deployment operations, 

subsystem needs, ventilation, comfort (heat, humidity), lighting, power, etc. Operational risks and system integrity 

issues associated with water based shielding concepts were not quantified in this phase of the project. Such work 

should be continued through the crew quarters selected approach.   

Finally, knowledge of the amounts of logistics on hand through a mission timeline is important to know if 

sufficient radiation protection is available for reconfiguration during an SPE.  It is suggested to perform Discrete 

Event Simulation (DES) to quantify logistics, food product, and waste product usage over time. DES scenarios can 

answer operational questions such as how much of a particular item is required at mission start, how much is 

available throughout the mission and where at any point in time are the items located. Manpower is not currently 

unidentified for such work, but it may prove crucial in future design efforts. 

Finally lessons learned from the FY’12 Storm Shelter radiation assessment and design process should be 

leveraged to influence the design and layout of future habitation concepts.  Tightly coupled integration of all 

subsystems will be necessary to enable future deep space habitation challenges. 

Appendix A – Parasitic Mass Estimates 
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Table 11 – Parasitic mass estimate for wearable protection concept (50% dose reduction, 2.8 inches water) 

 
 

Table 12 - Parasitic mass estimate for wearable protection concept (70% dose reduction, 6.1 inches water) 

 
 

Table 13 - Parasitic mass estimate for individual, deployable protection concept (50% dose reduction) 

 
 

item - for single crew coverage

Sub assy 

Unit 

Mass,

lbm

Assy Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Basic Sleeping Bag 7 1 7 0 0 1 0

bladder and bladder cover 17 1 17 1 17 1.1 19

2.8 inches water 509 1 509 0 0 1.5 0

Totals 534 17 19

Water Mass for 4 crew 2036

parasitic_water for 4 crew 728

Four Crew Parasitic Mass 805

item - for single crew coverage

Sub assy 

Unit 

Mass,

lbm

Assy Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Basic Sleeping Bag 8 1 8 0 0 1 0

bladder and bladder cover 19 1 19 1 19 1.1 21

6.1 inches water 509 1 950 0 0 1.5 0

Totals 977 19 21

Water Mass for 4 crew 3800

parasitic_water for 4 crew 2492

Four Crew Parasitic Mass 2577

item - for single crew coverage

Sub assy 

Unit 

Mass,

lbm

Assy Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Water Tanks 58.0 2.0 116.0 1.0 116.0 1.3 150.8

plate stiffeners 1.5 4.0 5.8 1.0 5.8 1.3 7.5

frames 0.3 8.0 2.5 1.0 2.5 1.3 3.3

hinges 0.2 2.0 0.4 1.0 0.4 1.3 0.5

membrane for shield attachment 6.0 1.0 6.0 1.0 6.0 1.3 7.8

water tank protection - water per tank 57.6 2.0 115.2 0.0 0.0 1.0 0.0

membrane protection -  HMC bricks 170.0 1.0 170.0 0.0 0.0 1.0 0.0

Brick mfg equipment 200.0 1.0 200.0 0.0 0.0 1.0 0.0

Positive Expulsion Device 10.0 2.0 20.0 1.0 20.0 1.3 26.0

Totals 635.9 130.7 195.9

Four Crew Parasitic Mass 783.744
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Table 14 - Parasitic mass estimate for individual, deployable protection concept (70% dose reduction) 

 
 

Table 15 - Parasitic mass estimate for crew quarters-derived protection concept (50% dose reduction)

  
 

Table 16 - Parasitic mass estimate for crew quarters-derived protection concept (70% dose reduction) 

 
 

Two crew quarter shelters, two crew per crew quarters:  

item - for single crew coverage

Sub assy 

Unit 

Mass,

lbm

Assy Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Water Tanks 58.0 2.0 116.0 1.0 116.0 1.3 150.8

plate stiffeners 1.5 4.0 5.8 1.0 5.8 1.3 7.5

frames 0.3 8.0 2.5 1.0 2.5 1.3 3.3

hinges 0.2 2.0 0.4 1.0 0.4 1.3 0.5

membrane for shield attachment 6.0 1.0 6.0 1.0 6.0 1.3 7.8

water tank protection - water per tank 57.6 2.0 115.2 0.0 0.0 1.0 0.0

membrane protection -  HMC bricks 1065.0 1.0 1065.0 0.0 0.0 1.0 0.0

Brick mfg equipment 200.0 1.0 200.0 0.0 0.0 1.0 0.0

Positive Expulsion Device 10.0 2.0 20.0 1.0 20.0 1.3 26.0

Totals 1530.9 130.7 195.9

Four Crew Parasitic Mass 783.744

item - for single crew coverage

Sub assy 

Unit Mass,

lbm

Assy Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Panels 110 1 110 0.1 11 1.5 17

2 Sides 36 0

top 10

bottom 9

door 33

back 23 0

Support Str. And Bumpout 225 1 225 0 0 1.5 0

Fasteners 11 1 11 0 0 1 0

Positive Expulsion Devices 10 3 30 1 30 1.5 45

Water 169 1 169 0 0 1 0

2 Sides 103 0
back 66 0

Totals 545 41 62

Water Mass 676

parasitic_water 0

Four Crew Parasitic Mass 246.06

item - for single crew coverage

Sub assy 

Unit Mass,

lbm

Assy Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Panels 110 1 110 0.1 11 1.5 17

2 Sides 36 0

top 10

bottom 9

door 33

back 23 0

Support Str. And Bumpout 225 1 225 0 0 1.5 0

Fasteners 11 1 11 0 0 1 0

Positive Expulsion Devices 10 3 30 1 30 1.5 45

Water 1456 1 1456 0 0 1 0

2 Sides 885 0
back 571 0

Totals 1832 41 62

Water Mass 5825

parasitic_water 4517

Four Crew Parasitic Mass 4763.432
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A more mass efficient operational approach for use of the crew quarters during an SPE event would be to use only 

two crew quarters and place two crew in each.  For that approach the following reductions in protection mass 

requirement are noted.  

 50% radiation reduction mass is 379 lbm  for 2 crew quarters 

 70% radiation reduction mass is 2656 lbm for 2 crew quarters 

Table 17 - Parasitic mass estimate for reconfigurable structures group protection concept, no logistics 

assistance (50% dose reduction)  

 
 

item - for 4 crew coverage

Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Lower Loft

endcap panels 32 3 96 0.1 10 1.5 14

cyl. shield panels 49 3 147 0.1 15 1.5 22

cyl gate panel 76 2 152 0.1 15 1.5 23

Lower Loft Water in endcap 

panels 0 3 0 0 0 1.5 0

Lower Loft Water in  shield 

panels 166 3 498 0 0 1.5 0

Lower Loft Water in  gate 

panels 162 2 323 0 0 1.5 0

mounting hardware 1 3 3 1 3 1.5 5

Lower Loft Positive 

Expulsion Devices 5 3 15 1 15 1.5 23

Main Floor

repositioned floor panels 32 8 256 0.1 26 1.5

 Shield panels 29 3 87 0.1 9 1.5

 Gate  panels 45 2 90 0.1 9 1.5 14

mounting hardware 1 8 8 1 8 1.5 12

water in floor panels 154 8 1231 0 0 1 0

water in shield panels 135 3 404 0 0 1 0

water in gate panels 131 2 261 0 0 1 0

Main Floor Positive 

Expulsion Devices 5 13 65 1 65 1.5 98

Totals 3636 174 209

Water Mass 2717

parasitic_water 1410

Four Crew Parasitic Mass 1619
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Table 18 - Parasitic mass estimate for reconfigurable structures group protection concept, no logistics 

assistance (70% dose reduction) 

 
 

Table 19 - Parasitic mass estimate for reconfigurable structures group protection concept, with logistics 

assistance (50% dose reduction) 

 
 

item - for 4 crew coverage

Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Lower Loft

endcap panels 32 3 96 0.1 10 1.5 14

cyl. shield panels 49 3 147 0.1 15 1.5 22

cyl gate panel 76 2 152 0.1 15 1.5 23

Lower Loft Water in endcap 

panels 0 3 0 0 0 1.5 0

Lower Loft Water in  shield 

panels 430 3 1290 0 0 1.5 0

Lower Loft Water in  gate 

panels 419 2 837 0 0 1.5 0

mounting hardware 1 3 3 1 3 1.5 5

Lower Loft Positive 

Expulsion Devices 5 3 15 1 15 1.5 23

Main Floor

repositioned floor panels 32 8 256 0.1 26 1.5

 Shield panels 29 3 87 0.1 9 1.5

 Gate  panels 45 2 90 0.1 9 1.5 14

mounting hardware 1 8 8 1 8 1.5 12

water in floor panels 379 8 3035 0 0 1 0

water in shield panels 332 3 995 0 0 1 0

water in gate panels 322 2 644 0 0 1 0

Main Floor Positive 

Expulsion Devices 5 13 65 1 65 1.5 98

Totals 7720 174 209

Water Mass 6801

parasitic_water 5493

Four Crew Parasitic Mass 5703

item - for 4 crew coverage

Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Lower Loft

endcap panels 32 3 96 0.1 10 1.5 14

cyl. shield panels 49 3 147 0.1 15 1.5 22

cyl gate panel 76 2 152 0.1 15 1.5 23

Lower Loft Water in endcap 

panels 0 3 0 0 0 1.5 0

Lower Loft Water in  shield 

panels 0 3 0 0 0 1.5 0

Lower Loft Water in  gate 

panels 0 2 0 0 0 1.5 0

mounting hardware 1 3 3 1 3 1.5 5

Lower Loft Positive 

Expulsion Devices 5 3 15 1 15 1.5 23

Main Floor

repositioned floor panels 32 8 256 0.1 26 1.5

 Shield panels 29 3 87 0.1 9 1.5

 Gate  panels 45 2 90 0.1 9 1.5 14

mounting hardware 1 8 8 1 8 1.5 12

water in floor panels 0 8 0 0 0 1 0

water in shield panels 0 3 0 0 0 1 0

water in gate panels 0 2 0 0 0 1 0

Main Floor Positive 

Expulsion Devices 5 13 65 1 65 1.5 98

Totals 919 174 209

Water Mass 0

parasitic_water 0

Four Crew Parasitic Mass 209
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Table 20 - Parasitic mass estimate for reconfigurable structures group protection concept, with logistics 

assistance (50% dose reduction) 

 

Appendix B – Decision Analysis Data 

 

Table 21 - Weighting set definitions for decision ranking 

 
  

item - for 4 crew coverage

Unit 

Mass,

lbm No. Units

Basic 

Mass,

lbm

parasitic 

factor

Basic 

parasitic 

Mass

MGA 

Factor

Predicted

Parasitic 

Mass,

lbm

Lower Loft

endcap panels 32 3 96 0.1 10 1.5 14

cyl. shield panels 49 3 147 0.1 15 1.5 22

cyl gate panel 76 2 152 0.1 15 1.5 23

Lower Loft Water in endcap 

panels 0 3 0 0 0 1.5 0

Lower Loft Water in  shield 

panels 170 3 510 0 0 1.5 0

Lower Loft Water in  gate 

panels 165 2 331 0 0 1.5 0

mounting hardware 1 3 3 1 3 1.5 5

Lower Loft Positive 

Expulsion Devices 5 3 15 1 15 1.5 23

Main Floor

repositioned floor panels 32 8 256 0.1 26 1.5

 Shield panels 29 3 87 0.1 9 1.5

 Gate  panels 45 2 90 0.1 9 1.5 14

mounting hardware 1 8 8 1 8 1.5 12

water in floor panels 192 8 1539 0 0 1 0

water in shield panels 168 3 504 0 0 1 0

water in gate panels 163 2 327 0 0 1 0

Main Floor Positive 

Expulsion Devices 5 13 65 1 65 1.5 98

Totals 4130 174 209

Water Mass 3211

parasitic_water 1904

Four Crew Parasitic Mass 2113

All Weights 

Equal

Baseline Mass

Savings 

Emphasis

Deployment 

Time   

Emphasis

protects 4 astronauts 1 0 0 0

provide 36 hour habitability 1 7 7 7

deploy in less than 60 

minutes

1 10 10 15

added mass % of baseline 

protection

1 10 15 10

design for ops in 1g env. 1 0 0 0

integrates with FY14 HDU 1 0 0 0

facilitates egress during an 

SPE

1 5 5 5

deployable by 2 persons or 

less

1 5 5 5

Preference Set Name
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Table 22 - Mapping of intrinsic measures to utility values 

added mass, 

% of baseline 

protection 

mass 

 

 

deploy in less 

than 60 

minute  

 

 

 
deployable by 

2 persons or 

less  

 

 

 

facilitates 

egress during 

SPE event 

 

 

 
design for ops 

in 1g 

environment 

yes= 1.0 

no = 0.0  

integrates 

with FY14 

HDU 

yes= 1.0 

no = 0.0 

 
 

protects 4 

astronauts  

 

 

habitability  

 

 

 
 

 

  

Utility

added mass % of baseline protection (percent)

1

0

0 200

Selected Point -- Level: Utility:

Utility

deploy in less than 60 minutes (minutes)

1

0

0 60

Selected Point -- Level: Utility:

Utility

deployable by 2 persons or less (integer)

1

0

0 4

Selected Point -- Level: Utility:

Utility

facilitates egress during an SPE (egressability)

1

0

0 1

Selected Point -- Level: Utility:

Please directly enter the Utility for design for ops in 1g env.

Label

Yes

No

Utility

Please directly enter the Utility for integrates with FY14 HDU

Label

Yes

No

Utility

Utility

protects 4 astronauts (astronauts)

1

0

0 4

Selected Point -- Level: Utility:

Utility

habitability (comfort)

1

0

0 1

Selected Point -- Level: Utility:
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 50% Radiation Reduction 70% Radiation Reduction 

Equal FOM  

Weighting 

 

 
Figure 16  

 

 

 

 
Figure 17  

Baseline FOM 

Weighting 

 

 
Figure 18  

 

 

 

 
Figure 19 

 

 

 

 

 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Deployable 
Reconfigurable Structure 
Reconfigurable Structure & Logistics Adjustment 
Wearable Prefilled 
Wearable Fill as Needed 

Utility 
 0.794 
 0.712 
 0.568 
 0.528 
 0.521 
 0.130 

deploy in less than 60 minutes 
facilitates egress during an SPE 
design for ops in 1g env. 

added mass % of baseline protection 
deployable by 2 persons or less 
integrates with FY14 HDU 

habitability 
protects 4 astronauts 

Preference Set = Baseline 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Wearable Prefilled 
Deployable 
Reconfigurable Structure 
Reconfigurable Structure & Logistics Adjustment 

Wearable Fill as Needed 

Utility 
 0.933 
 0.719 
 0.669 
 0.616 
 0.580 
 0.489 

deploy in less than 60 minutes 
facilitates egress during an SPE 
design for ops in 1g env. 

added mass % of baseline protection 
deployable by 2 persons or less 
integrates with FY14 HDU 

habitability 
protects 4 astronauts 

Preference Set = Baseline 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Deployable 
Reconfigurable Structure 
Reconfigurable Structure & Logistics Adjustment 
Wearable Prefilled 
Wearable Fill as Needed 

Utility 
 0.898 
 0.820 
 0.766 
 0.741 
 0.678 
 0.435 

deploy in less than 60 minutes 
added mass % of baseline protection 
facilitates egress during an SPE 

protects 4 astronauts 
design for ops in 1g env. 
deployable by 2 persons or less 

habitability 
integrates with FY14 HDU 

Preference Set = All Weights Equal 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Wearable Prefilled 
Deployable 
Reconfigurable Structure 
Reposition Structure & Logistics Adjustment 
Wearable Fill as Needed 

Utility 
 0.963 
 0.835 
 0.800 
 0.788 
 0.766 
 0.666 

protects 4 astronauts 
added mass % of baseline protection 
facilitates egress during an SPE 

habitability 
design for ops in 1g env. 
deployable by 2 persons or less 

deploy in less than 60 minutes 
integrates with FY14 HDU 

Preference Set = All Weights Equal 
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 50% Radiation Reduction 70% Radiation Reduction 

Mass Savings 

Emphasis 

 

 
Figure 20 

 

 

 
Figure 21 

Minimum 

Deploy Time 

Emphasis 

 

 
Figure 22 

 

 

 

 
Figure 23 

 

 

 

  

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Deployable 
Reconfigurable Structure 
Wearable Prefilled 
Reconfigurable Structure & Logistics Adjustment 
Wearable Fill as Needed 

Utility 
 0.804 
 0.695 
 0.566 
 0.549 
 0.465 
 0.090 

deploy in less than 60 minutes 
facilitates egress during an SPE 
design for ops in 1g env. 

added mass % of baseline protection 
deployable by 2 persons or less 
integrates with FY14 HDU 

habitability 
protects 4 astronauts 

Preference Set = KPP_Ops_Bias 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Wearable Prefilled 
Deployable 
Reconfigurable Structure 
Reconfigurable Structure & Logistics Adjustment 
Wearable Fill as Needed 

Utility 
 0.927 
 0.722 
 0.657 
 0.608 
 0.511 
 0.479 

deploy in less than 60 minutes 
facilitates egress during an SPE 
design for ops in 1g env. 

added mass % of baseline protection 
deployable by 2 persons or less 
integrates with FY14 HDU 

habitability 
protects 4 astronauts 

Preference Set = KPP_Ops_Bias 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Deployable 
Reconfigurable Structure & Logistics Adjustment 
Wearable Prefilled 
Reconfigurable Structure 
Wearable Fill as Needed 

Utility 
 0.748 
 0.734 
 0.552 
 0.540 
 0.535 
 0.195 

added mass % of baseline protection 
facilitates egress during an SPE 
design for ops in 1g env. 

deploy in less than 60 minutes 
deployable by 2 persons or less 
integrates with FY14 HDU 

habitability 
protects 4 astronauts 

Preference Set = KPP_Mass_Bias 

Ranking for Select Concept Goal 

Alternative 
CQ Waterwall Prefilled 
Wearable Prefilled 
Deployable 
Reconfigurable Structure & Logistics Adjustment 
Reconfigurable Structure 
Wearable Fill as Needed 

Utility 
 0.931 
 0.720 
 0.677 
 0.622 
 0.597 
 0.518 

added mass % of baseline protection 
facilitates egress during an SPE 
design for ops in 1g env. 

deploy in less than 60 minutes 
deployable by 2 persons or less 
integrates with FY14 HDU 

habitability 
protects 4 astronauts 

Preference Set = KPP_Mass_Bias 
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Appendix C – RadWorks Storm Shelter Project Requirements 

 

Reqt # Shall Statement Rationale
KPP? 

(Y/N)

Threshold 

Value (for 

KPP)

Goal Value (for 

KPP)
Verification Success Criteria Verif. Method

SS001
Storm sheltering shall protect 4 

astronauts.

Sheltering must be adequately sized to 

accommodate all personnel anticipated 

to inhabit the HDU simultaneously.

Demonstrate that storm sheltering is of 

sufficient size to accommodate TBR 

astronauts.

Demonstration

SS002 <Deleted>

SS003

Storm sheltering shall provide crew 

protection for a nominal 36 hour 

habitability period. 

Storm sheltering configuration should be 

reasonable for astronaut habitation given 

the limited space of the shelter.

No

Astronauts remain sufficiently 

comfortable and accommodated for a 36 

hour SPE.

Demonstration

SS004
Storm sheltering shall be deployed/ 

assembled in less than 60 minutes.

Sheltering set-up should be easily 

achievable based on time between 

warning and SPE event.

Yes 60 min 15 min

Demonstrate that storm shelter can be 

deployed/assembled in the time 

required.

Demonstration

SS005
Added mass shall be less than 20% of 

the raw shielding mass.
Avoidance of parasitic mass. Yes 20% 10%

Show analysis results that verify 

adherence to mass requirements.
Analysis

SS006
The astronauts 90% percentile SPE 

exposure shall be reduced by 50%.

Effective protection will increase 

allowable astronaut time in  space and 

operational flexibility.

Yes 50% 70%
Analysis results document required SPE 

protection.
Analysis

SS007

Storm sheltering shall be designed for 

space operations loads equivalent in a 

1-g environment.

For handling demonstration, the 

operational environment should be 

replicated as closely as possible. 

Reduced-g will be tracked analytically.

No
Show analysis results that verify 

adherence to gravity requirement.
Analysis

SS008 <Deleted>

SS009
Storm sheltering shall integrate with 

FY14 HDU configuration.

Storm sheltering must effectively 

integrate with the HDU without impact to 

HDU functionality.

No
Demonstrate integration of storm 

sheltering with HDU.
Demonstration

SS010
A minimum of 3 storm sheltering 

design concepts shall be identified.

Multiple concepts provide means for 

users to understand benefits and risks 

associated with each concept.

No
Show design concepts via CAD models 

and/or sub-scale models.
Inspection

SS011
Storm shelter features shall facilitate 

astronaut egress during SPE.

Personnel may need brief access to other 

areas of the habitat during a storm event 

for purposes of personal hygiene, to 

perform a short term maintenance task, 

or to maintain habitat safety.

No
Demonstrate that storm shelter features 

facilitate egress during a storm event.
Demonstration

SS012

Deployment/assembly of storm 

sheltering shall require not more than 

2 persons.

So as to have minimum impact on 

mission operations, it is necessary that 

the number of persons required for 

assembly of the storm shelter be 

minimized.

No

Demonstrate that storm shelter can be 

deployed/assembled by not more than 2 

persons.

Demonstration
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