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Introduction

• Satellite/Payload Ground Systems
– Typically highly-customized to a

specific mission’s use cases
– Utilize hundreds (or thousands!) of

specialized point-to-point interfaces
for data flows / file transfers

• Documentation and tracking of
these complex interfaces requires
extensive time to develop and 
extremely high staffing costs

• Implementation and testing of these interfaces are even 
more cost-prohibitive, and documentation often lags behind 
implementation resulting in inconsistencies down the road
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ITSec, IA and Operational Security (OPSEC)

• With expanding threat vectors, IT
Security, Information Assurance
and Operational Security have
become key Ground System
architecture drivers

• New Federal security-related directives are generated on a 
daily basis, imposing new requirements on current  / 
existing ground systems
– These mandated activities and data calls typically carry 

little or no additional funding for implementation
• As a result, Ground System Sustaining Engineering groups 

and Information Technology staff continually struggle to 
keep up with the rolling tide of security
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Multi-Mission Resource Sharing

• Advancing security concerns and shrinking budgets are 
pushing these large stove-piped ground systems to begin 
sharing resources
– I.e. Operational / SysAdmin staff, IT security baselines, 

architecture decisions or even networks / hosting 
infrastructure

• Refactoring these existing ground systems into multi-
mission assets proves extremely challenging due to what is 
typically very tight coupling between legacy components

• As a result, many “Multi-Mission” ops. environments end up 
simply sharing compute resources and networks due to the 
difficulty of refactoring into true multi-mission systems
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Multi-Mission Resource Sharing (2)

• In many cases, Ground System baseline documentation 
was generated to the original “as-built” system

• Ground Systems continue to evolve post-launch
– Changes not always captured in documentation

• When refreshing GS hardware, there is typically a complex 
“reverse-engineering” effort to derive the current state of 
software configurations and data flows so that existing 
capabilities can be fully re-implemented on the updated 
system

• CCB-tracked updates such as OS and software patches 
also muddy the waters, since these changes can alter the 
installation process and require additional steps to be taken
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GMSEC Open Architecture
The Goddard Mission Services Evolution Center (GMSEC) project has 
worked to develop an open architecture for Ground System messaging
• Under development since 2001, utilized operationally since 2005
• Facilitates interoperability across GS Components via standard 

messaging protocol and industry-standard middleware options
• Promotes High (Functional) Cohesion across components

– GMSEC-based components contribute to a specific well-defined task 
(i.e. TT&C, Alerting, Event-driven, Time-based or Product/File-based 
automation, Mission Planning, Situational Awareness / Visualization)

– This allows for swapping of GS components or message routing 
middleware without requiring extensive interface-related NRE or any 
changes to existing or new components

– For aging legacy ground systems, being able to pull out a no-longer-
supported component and replace it cleanly with a modern equivalent 
is essential, and the GMSEC approach greatly simplifies this!
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GMSEC Open Architecture (2)
• Provides for Loose Coupling between components

– GMSEC messages provide a standards-based messaging approach 
that co-ordinates how components implement cross-system event 
logging, telemetry, command, control directive and status messaging

– Greatly reduces the need for custom-built GS interfaces
– Messaging specification is extremely extensible and is maintained at 

several different layers allowing for maximum flexibility
• Many benefits realized by these simplified interfaces:

– Reduces complexity of documentation and architecture
– Eases testing costs due to simplified interfaces
– Helps facilitates the introduction of secure federated enterprise 

environments by providing a common message-based data fabric that 
can be extended across mission boundaries and Ground System 
components

– Provides enhanced situational awareness capabilities
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GMSEC API
• GMSEC API provides the interface that all components utilizes to 

publish / subscribe to messages on the bus
• Completely abstracts communications with the middleware
• Able to take advantage of native middleware security features such as 

transport-level encryption, source/destination-based controls
• GMSEC API available as open-source on SourceForge
• CompatC2 “Secure” API (available for Government use) layers on 

additional message-level security features such as payload encryption, 
message signing, message authentication and non-repudiation

• Active collaboration between NASA and other government space 
organizations
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GMSEC Message Specification Governance
• GMSEC employs a 3-layer governance model for messages:

– Local Level
• Missions can develop their own usage document
• Local naming conventions
• Values for header fields
• Selection of messages that will be used

– CompatC2 Level or other organization
• Addendum generated for items of value across the DoD

– Satellite Naming Conventions
– DoD-specific navigation message
– General guidelines

– GMSEC Level
• NASA maintains the primary message specification volume
• Available to interested groups upon request

• Good recent examples have demonstrated that this process works well.
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GMSEC-Level Message Specification
• Messages at the Local Level or CompatC2 level are routinely reviewed for 

general applicability and if more universally useful, promoted to the next level
• The NASA GMSEC Message Specification provides a common set of message 

types for typical Ground System communications needs:
– Event Messages
– Component Directives
– Framed/packetized telemetry
– Framed/packetized commands
– Decommutated mnemonic messages
– File/Product arrival messages
– Etc.

• Each class of messages is published to a unique “message subject” that 
identifies the type of message and some key parameters describing the data 
contained therein

• This is also the mechanism that components can select which data to subscribe
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GMSEC Message Subjects

. MSG.TLMEOS .TERRA 

Telemetry Message Subject Example:

Fixed, required portion Message dependent, 
variable portion

Mission 
Elements

Message 
Elements

Miscellaneous 
Elements

Subject 
Elements

Specifi-
cation Mission Sat ID Type Subtype me1 me2 me3 me4…

VARIABLE PORTIONFIXED PORTION

Required Elements
Message Definition Determines 

Whether a Miscellaneous Element 
is Required or Optional

(Body of the message follows the above header)

Subject
Standard

GMSEC. .TAC.RT.CCSDSFRAME.2.1
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GMSEC API 4
• Recent release of GMSEC API 4 provides a brand new re-designed 

interface to GMSEC
– Leverages modern innovations in programming theory
– Adopt best practices for modern object-oriented APIs
– Streamlines integration of new components onto the bus and reduces 

coding errors
• GMSEC team has been working closely with mission and industry to 

adopt cutting-edge best practices into their development lab and 
engineer the building blocks for ground systems of the future

• Adapting an existing to GMSEC requires building a small adapter 
glueware for each message type
– This typically can be done in a day or two even for a large and 

complex piece of software
– The adapter code needs only to translate between the component’s 

native interfaces and the GMSEC messaging protocol
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Innovations in System Deployment
Recent missions and GMSEC initiatives have utilized Advanced IT automation 
tools to speed system implementation and deployment of new systems
• Rapid System Deployment Tools such as:

Cobbler / Vagrant / Vmware Templates / Microsoft Deployment Toolkit (MDT)
– Installs a customized OS image within minutes in a fully-automated fashion
– Can utilize different templates / build scripts to customize images based on 

requirements
• Software CM / System Baseline tools such as:

Puppet / Ansible / Microsoft Group Policy
– Automatically deploy custom software / baseline overlay on base system (CIS 

Benchmark, USGCB, DoD STIGs)
– Install application software (GMSEC API, GMSEC components, Ground 

System software / TT&C, Mission Planning, etc.)
– Install supporting tools / utilities (Matlab, Perl/Tk, other supporting modules)
– Continuously enforce baselines and configuration in support of Continuous 

Monitoring and DHS Continuous Diagnostics and Mitigation (CDM) initiatives
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System Deployment Process Improvement

• System baselines and software installs are implemented as 
Puppet / Ansible code that is continually executed
– Alternative would be paper set-up procedures which are 

hard-to-maintain and slow to utilize
• Configuration Managed code becomes your system 

baseline documentation
– Ensures continual compliance with security policies which 

are audited and enforced on an hourly basis
• New system deployments take minutes instead of days
• Entire Ground System deployments can be scripted, 

iteratively tested, and most importantly re-produced as 
necessary



GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

15

Change Management
• Changes / updates to the ground system are also implemented via code 

/ Group Policy
• This guarantees any newly-build systems will inherit the current up-to-

date baseline
• Provides a boon to IT security thanks to the approach satisfying 

Continuous Monitoring directives with little or no extra effort
• Future multi-mission ground system components will install themselves 

from CM, configure themselves, install security baselines and be ready 
to operate within minutes

• This continuous integration approach to enterprise-level architecture 
and configuration management mirrors many of the approaches and 
techniques used in Agile development, and allows for a much more 
rapid, reproducible workflow for GS development and engineering
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Conclusion
• Utilizing continuous integration / rapid system deployment technologies 

in conjunction with an open architecture messaging approach allows 
System Engineers and Architects to worry less about the low-level 
details of interfaces between components and configuration of systems

• GMSEC messaging is inherently designed to support multi-mission 
requirements, and allows components to aggregate data across 
multiple homogeneous or heterogeneous satellites or payloads
– The highly-successful Goddard Science and Planetary Operations 

Control Center (SPOCC) utilizes GMSEC as the hub for it’s 
automation and situational awareness capability

• Shifts focus towards getting GS to a final configuration-managed 
baseline, as well as multi-mission / big-picture capabilities that help 
increase situational awareness, promote cross-mission sharing and 
establish enhanced fleet management capabilities across all levels of 
the enterprise.



GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

17


	Smashing the Stovepipe
	Introduction
	ITSec, IA and Operational Security (OPSEC)
	Multi-Mission Resource Sharing
	Multi-Mission Resource Sharing (2)
	GMSEC Open Architecture
	GMSEC Open Architecture (2)
	GMSEC API
	GMSEC Message Specification Governance
	GMSEC-Level Message Specification
	GMSEC Message Subjects
	GMSEC API 4
	Innovations in System Deployment
	System Deployment Process Improvement
	Change Management
	Conclusion
	Slide Number 17

