
National Aeronautics and Space Administration

Smashing the Stovepipe

GSAW 2017
Session 11E: Adopting Agile Ground Software Development
Wednesday, March 15th, 2017
Los Angeles, California

Leveraging the GMSEC Open Architecture and Advanced IT Automation
to Rapidly Prototype, Develop and Deploy

Next-Generation Multi-Mission Ground Systems

Paul Swenson
paul.swenson@nasa.gov

Presenting:

NASA Goddard Space Flight Center
Software Engineering Division

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

2

Introduction

• Satellite/Payload Ground Systems
– Typically highly-customized to a

specific mission’s use cases
– Utilize hundreds (or thousands!) of

specialized point-to-point interfaces
for data flows / file transfers

• Documentation and tracking of
these complex interfaces requires
extensive time to develop and
extremely high staffing costs

• Implementation and testing of these interfaces are even
more cost-prohibitive, and documentation often lags behind
implementation resulting in inconsistencies down the road

Photo © Warren Mars

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

3

ITSec, IA and Operational Security (OPSEC)

• With expanding threat vectors, IT
Security, Information Assurance
and Operational Security have
become key Ground System
architecture drivers

• New Federal security-related directives are generated on a
daily basis, imposing new requirements on current /
existing ground systems
– These mandated activities and data calls typically carry

little or no additional funding for implementation
• As a result, Ground System Sustaining Engineering groups

and Information Technology staff continually struggle to
keep up with the rolling tide of security

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

4

Multi-Mission Resource Sharing

• Advancing security concerns and shrinking budgets are
pushing these large stove-piped ground systems to begin
sharing resources
– I.e. Operational / SysAdmin staff, IT security baselines,

architecture decisions or even networks / hosting
infrastructure

• Refactoring these existing ground systems into multi-
mission assets proves extremely challenging due to what is
typically very tight coupling between legacy components

• As a result, many “Multi-Mission” ops. environments end up
simply sharing compute resources and networks due to the
difficulty of refactoring into true multi-mission systems

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

5

Multi-Mission Resource Sharing (2)

• In many cases, Ground System baseline documentation
was generated to the original “as-built” system

• Ground Systems continue to evolve post-launch
– Changes not always captured in documentation

• When refreshing GS hardware, there is typically a complex
“reverse-engineering” effort to derive the current state of
software configurations and data flows so that existing
capabilities can be fully re-implemented on the updated
system

• CCB-tracked updates such as OS and software patches
also muddy the waters, since these changes can alter the
installation process and require additional steps to be taken

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

6

GMSEC Open Architecture
The Goddard Mission Services Evolution Center (GMSEC) project has
worked to develop an open architecture for Ground System messaging
• Under development since 2001, utilized operationally since 2005
• Facilitates interoperability across GS Components via standard

messaging protocol and industry-standard middleware options
• Promotes High (Functional) Cohesion across components

– GMSEC-based components contribute to a specific well-defined task
(i.e. TT&C, Alerting, Event-driven, Time-based or Product/File-based
automation, Mission Planning, Situational Awareness / Visualization)

– This allows for swapping of GS components or message routing
middleware without requiring extensive interface-related NRE or any
changes to existing or new components

– For aging legacy ground systems, being able to pull out a no-longer-
supported component and replace it cleanly with a modern equivalent
is essential, and the GMSEC approach greatly simplifies this!

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

7

GMSEC Open Architecture (2)
• Provides for Loose Coupling between components

– GMSEC messages provide a standards-based messaging approach
that co-ordinates how components implement cross-system event
logging, telemetry, command, control directive and status messaging

– Greatly reduces the need for custom-built GS interfaces
– Messaging specification is extremely extensible and is maintained at

several different layers allowing for maximum flexibility
• Many benefits realized by these simplified interfaces:

– Reduces complexity of documentation and architecture
– Eases testing costs due to simplified interfaces
– Helps facilitates the introduction of secure federated enterprise

environments by providing a common message-based data fabric that
can be extended across mission boundaries and Ground System
components

– Provides enhanced situational awareness capabilities

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

8

GMSEC API
• GMSEC API provides the interface that all components utilizes to

publish / subscribe to messages on the bus
• Completely abstracts communications with the middleware
• Able to take advantage of native middleware security features such as

transport-level encryption, source/destination-based controls
• GMSEC API available as open-source on SourceForge
• CompatC2 “Secure” API (available for Government use) layers on

additional message-level security features such as payload encryption,
message signing, message authentication and non-repudiation

• Active collaboration between NASA and other government space
organizations

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

9

GMSEC Message Specification Governance
• GMSEC employs a 3-layer governance model for messages:

– Local Level
• Missions can develop their own usage document
• Local naming conventions
• Values for header fields
• Selection of messages that will be used

– CompatC2 Level or other organization
• Addendum generated for items of value across the DoD

– Satellite Naming Conventions
– DoD-specific navigation message
– General guidelines

– GMSEC Level
• NASA maintains the primary message specification volume
• Available to interested groups upon request

• Good recent examples have demonstrated that this process works well.

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

10

GMSEC-Level Message Specification
• Messages at the Local Level or CompatC2 level are routinely reviewed for

general applicability and if more universally useful, promoted to the next level
• The NASA GMSEC Message Specification provides a common set of message

types for typical Ground System communications needs:
– Event Messages
– Component Directives
– Framed/packetized telemetry
– Framed/packetized commands
– Decommutated mnemonic messages
– File/Product arrival messages
– Etc.

• Each class of messages is published to a unique “message subject” that
identifies the type of message and some key parameters describing the data
contained therein

• This is also the mechanism that components can select which data to subscribe

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

11

GMSEC Message Subjects

. MSG.TLMEOS .TERRA

Telemetry Message Subject Example:

Fixed, required portion Message dependent,
variable portion

Mission
Elements

Message
Elements

Miscellaneous
Elements

Subject
Elements

Specifi-
cation Mission Sat ID Type Subtype me1 me2 me3 me4…

VARIABLE PORTIONFIXED PORTION

Required Elements
Message Definition Determines

Whether a Miscellaneous Element
is Required or Optional

(Body of the message follows the above header)

Subject
Standard

GMSEC. .TAC.RT.CCSDSFRAME.2.1

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

12

GMSEC API 4
• Recent release of GMSEC API 4 provides a brand new re-designed

interface to GMSEC
– Leverages modern innovations in programming theory
– Adopt best practices for modern object-oriented APIs
– Streamlines integration of new components onto the bus and reduces

coding errors
• GMSEC team has been working closely with mission and industry to

adopt cutting-edge best practices into their development lab and
engineer the building blocks for ground systems of the future

• Adapting an existing to GMSEC requires building a small adapter
glueware for each message type
– This typically can be done in a day or two even for a large and

complex piece of software
– The adapter code needs only to translate between the component’s

native interfaces and the GMSEC messaging protocol

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

13

Innovations in System Deployment
Recent missions and GMSEC initiatives have utilized Advanced IT automation
tools to speed system implementation and deployment of new systems
• Rapid System Deployment Tools such as:

Cobbler / Vagrant / Vmware Templates / Microsoft Deployment Toolkit (MDT)
– Installs a customized OS image within minutes in a fully-automated fashion
– Can utilize different templates / build scripts to customize images based on

requirements
• Software CM / System Baseline tools such as:

Puppet / Ansible / Microsoft Group Policy
– Automatically deploy custom software / baseline overlay on base system (CIS

Benchmark, USGCB, DoD STIGs)
– Install application software (GMSEC API, GMSEC components, Ground

System software / TT&C, Mission Planning, etc.)
– Install supporting tools / utilities (Matlab, Perl/Tk, other supporting modules)
– Continuously enforce baselines and configuration in support of Continuous

Monitoring and DHS Continuous Diagnostics and Mitigation (CDM) initiatives

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

14

System Deployment Process Improvement

• System baselines and software installs are implemented as
Puppet / Ansible code that is continually executed
– Alternative would be paper set-up procedures which are

hard-to-maintain and slow to utilize
• Configuration Managed code becomes your system

baseline documentation
– Ensures continual compliance with security policies which

are audited and enforced on an hourly basis
• New system deployments take minutes instead of days
• Entire Ground System deployments can be scripted,

iteratively tested, and most importantly re-produced as
necessary

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

15

Change Management
• Changes / updates to the ground system are also implemented via code

/ Group Policy
• This guarantees any newly-build systems will inherit the current up-to-

date baseline
• Provides a boon to IT security thanks to the approach satisfying

Continuous Monitoring directives with little or no extra effort
• Future multi-mission ground system components will install themselves

from CM, configure themselves, install security baselines and be ready
to operate within minutes

• This continuous integration approach to enterprise-level architecture
and configuration management mirrors many of the approaches and
techniques used in Agile development, and allows for a much more
rapid, reproducible workflow for GS development and engineering

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

16

Conclusion
• Utilizing continuous integration / rapid system deployment technologies

in conjunction with an open architecture messaging approach allows
System Engineers and Architects to worry less about the low-level
details of interfaces between components and configuration of systems

• GMSEC messaging is inherently designed to support multi-mission
requirements, and allows components to aggregate data across
multiple homogeneous or heterogeneous satellites or payloads
– The highly-successful Goddard Science and Planetary Operations

Control Center (SPOCC) utilizes GMSEC as the hub for it’s
automation and situational awareness capability

• Shifts focus towards getting GS to a final configuration-managed
baseline, as well as multi-mission / big-picture capabilities that help
increase situational awareness, promote cross-mission sharing and
establish enhanced fleet management capabilities across all levels of
the enterprise.

GSAW 2017, Session 11E: Adopting Agile Ground Software Development
Smashing the Stovepipe

17

	Smashing the Stovepipe
	Introduction
	ITSec, IA and Operational Security (OPSEC)
	Multi-Mission Resource Sharing
	Multi-Mission Resource Sharing (2)
	GMSEC Open Architecture
	GMSEC Open Architecture (2)
	GMSEC API
	GMSEC Message Specification Governance
	GMSEC-Level Message Specification
	GMSEC Message Subjects
	GMSEC API 4
	Innovations in System Deployment
	System Deployment Process Improvement
	Change Management
	Conclusion
	Slide Number 17

