

Independent Testing

Justin R Morris Justin.R.Morris@nasa.gov NASA Computer Engineer JSTAR Team Lead

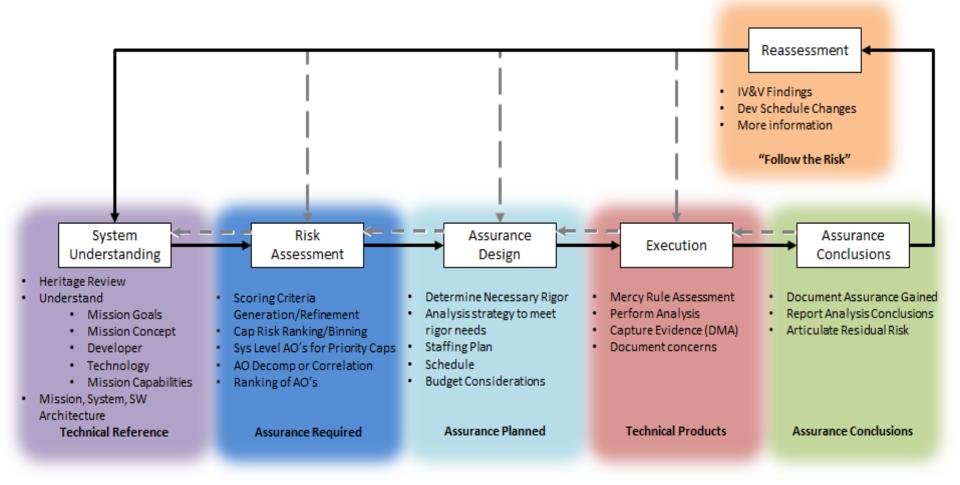
NASA'S Dynamic IV&V PROGRAM Analysis

https://www.nasa.gov/centers/ivv/home/index.html

March 10, 2017

2017 IEEE International Conference on Software Testing

Outline


- Introduction
 - NASA IV&V Program
 - NASA IV&V Process
 - Terms and Definitions
 - NASA IV&V Program Independent Testing Objectives
 - Why Independent Test?
- NASA IV&V Independent Testing
 - Plan the Testing
 - Acquire the Test Environment
 - Prepare the Test Environment
 - Execute Tests and Analyze Results

NASA IV&V Program Overview

- Responsible for performing Independent Verification and Validation (IV&V) on high profile NASA missions
- Functionally reports to the Chief, Office of Safety and Mission Assurance (OSMA) NASA HQ
- Agency requirements for IV&V defined in
 - NPD 7120.4D, NASA Engineering and Program/Project Management Policy
 - NPR 7150.2, NASA Software Engineering Requirements
- Staff of ~250 personnel
- ISO 9001:2008 Certified
- Only NASA Center with VPP Star Certification
- Pursuing FedRamp Certification
- Legacy of Customer Satisfaction
 - 94% acceptance rate for findings
 - 95% customer satisfaction (2015 annual customer survey)

NASA IV&V Process

Terms and Definitions

 Independent Testing – Application of dynamic analysis that is conducted by an organization apart from the system developer to verify the implementation (source/object code) is correct and complete

Independent Software Testing Objectives

- Independent Software Testing is a method used by our Program to reduce system and software risks
- Provides evidence-based assurance of correct and complete implementation of software behaviors in final source or binary images within an operational environment
- Provides substantiating evidence of issues discovered during other activities in the IV&V process

Pros of Independent Testing

- Testing provides strong objective evidence of defects
- Supplements Requirements Analysis, Design Analysis, and Implementation Analysis
- Supplements Test Documentation Analysis for integration coverage
- Provides high degree of assurance that assertions regarding software quality and suitability are accurate
- Practical method for verifying certain behaviors, like:
 - Deadlock and race avoidance
 - Inter-process timing and queuing (like SpaceWire backpressure)
 - Complex fault management with multiple faults
 - Extended duration operations
 - Hardware failure fault management
 - Interdependencies

Independent Test Lifecycle

1. Plan the Testing

- Establishing the focus areas for testing; what assurance objectives are best accomplished via testing; resources needed to support the analysis and testing
- Determining the requirements of the test platform to support the planned assurance objectives

2. Acquire Test Environment

- Acquire the simulations, test hardware and other assets
- Integrate all into functional test bed for injecting IV&V tests scripts

3. Prepare for Testing

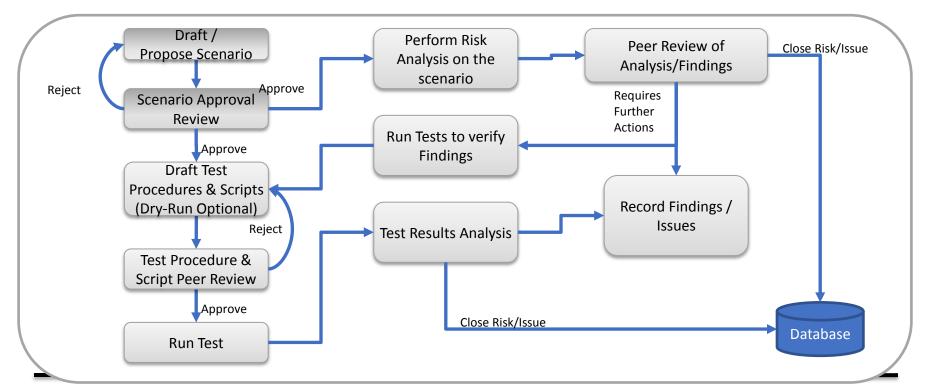
- Configuration of the test environment
- Develop test plans and associated test scripts
- Configuration management of test environment and artifacts

4. Perform Testing

Execute test, collect results and evaluate results

1. Plan the Testing

NASA IV&V Program


- Consider risk of system/subsystem
 - IV&V is Risk-Driven and Focused
 - IV&V analyses should "Follow the Risk"
- Select appropriate IV&V artifacts and development artifacts as test source data
- Identify a set of developer tests to validate test environment
- Plan and document test cases

Test Case Identification

- Project 1
 - IV&V Analysis team comes up with candidate test cases in lightweight form
 - Candidate test cases are screened through Independent Test Working Group and approved by lead
 - Selected Test Cases are fully developed and tested
- Project 2
 - Team identifies risk reduction scenarios (RRS) which are not being tested by the Developer
 - The RRSs are specified in the test plan
- Project 3
 - Analysts define test cases based on lifecycle analysis being performed

Risk Driven Testing (Approach for Risk Reduction Scenarios Identification)

- Definition of Risk Reduction Scenarios:
 - Risk scenarios must have impact to the mission success or cause the loss of mission objectives. For example, a fault that happened at the wrong time may cause the loss of mission.

IV&V - "Follow the Risk" (Mission Example)

- Some Examples
 - Stored Command Sequence (SCS) Validation
 - Long-Duration FSW Testing
 - Fault Scenarios (e.g., Stuck Thruster)
 - Flight Computer fault injection (Instruction faults, etc.)
 - Primary/Backup C&DH Swapping
 - Dropped Packet Analysis
 - Visualization Capability for Attitude Control System

"Follow the Risk"

<u>Risk</u>

 Prior IV&V/Project Risk captures complexity and criticality of Stored Command Sequences when also considered a part of the larger integrated system of systems.

Mitigation/Action

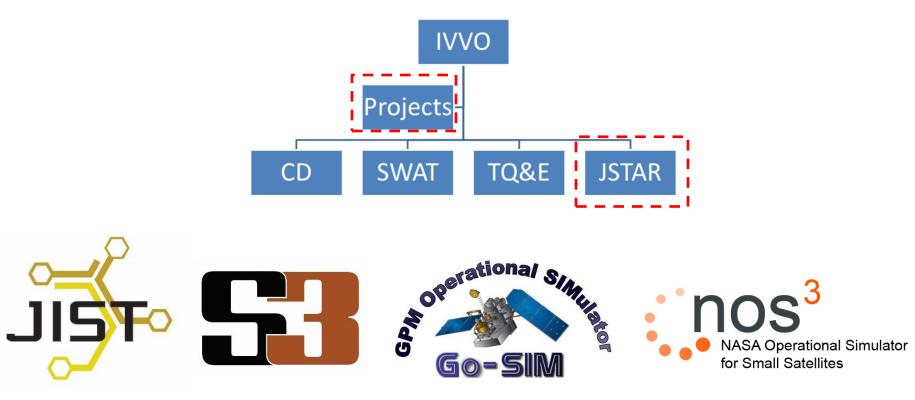
- Mitigation included more rigorous design and peer review process, and "potential" for additional testing
- IV&V perform additional SCS testing
- Tie into developer Working Group

Results/Findings

- Test Scenarios Tested
 - 15 Issues Identified to Date

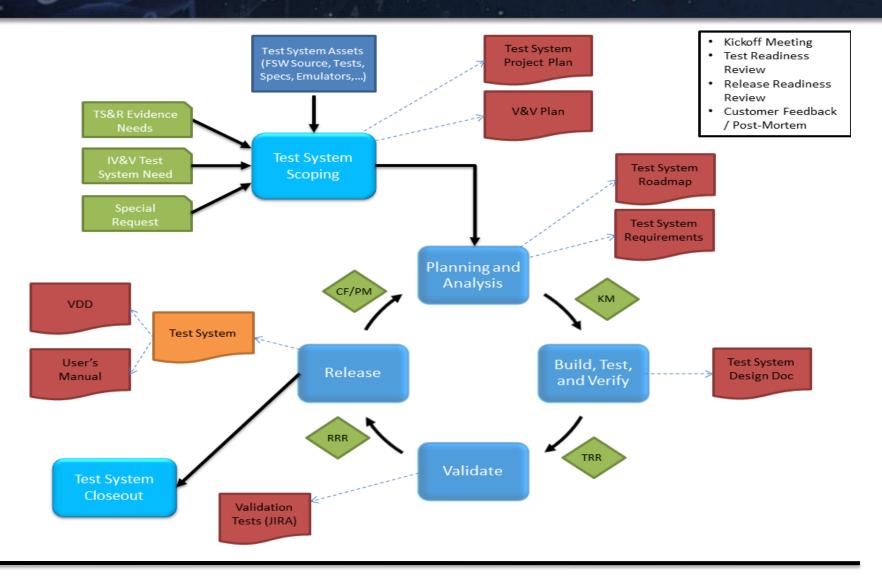
Value Added

- Impacts to Project
 - Impact to schedule and cost averted.
- Impacts to IV&V
 - Insight into FM/Observatory response increased.
 - Awareness of SCS criticality revisited



2. Acquire Test Environment

NASA IV&V Program


Jon McBride Software Testing and Research (JSTAR)

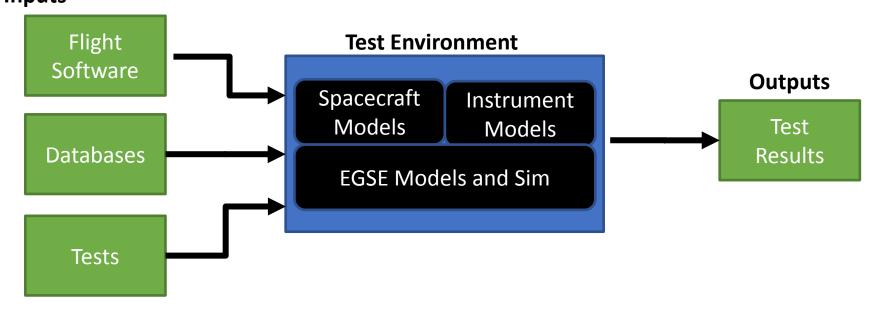
Develop, maintain, and operate test environments and supporting tools for the IV&V Program that enables the dynamic analysis of software behaviors for multiple NASA missions

Test Environment Development Process

5

Test Environment Types

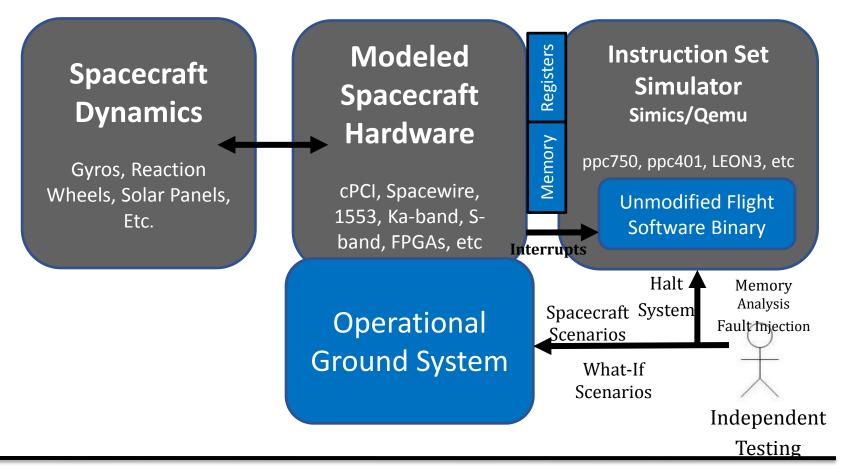
I) Software only	II) HW/SW Hybrid	III) Software Only – Alt	IV) Subsystem – Alt
Simulation – Full-Up	Simulation – Full-Up	Compile Execution	Compilation
 Requires moderate development effort (cost/schedule) Provides high degree of realism (hard to refute findings) Dependent on build releases of software under test Most flexible test options TEST as Fly 	 Hardest to build Highest cost Highest degree of realism Limited fault injection options Depends on HW and SW availability TEST as Fly 	 Not TEST as Fly Requires modification of the FSW to stub out board support dependencies May require less effort to build May be available from development program Not ground system dependent 	 Least test environment development (stubs to cut subsystem out of system arch. may require extensive development) Not TEST as Fly Provides quick assessment of unit level concerns. Algorithm verification


Test Environment Acquisition Methods

	Method	
1	Acquire Development Project Test Environment	
2	Develop Test Environment (Hybrid or Completely Independent)	
3	HWIL Environment	
4	Test Environment Remote Access	

With respect to Test System / Environment Acquisition, Every Mission is Unique.

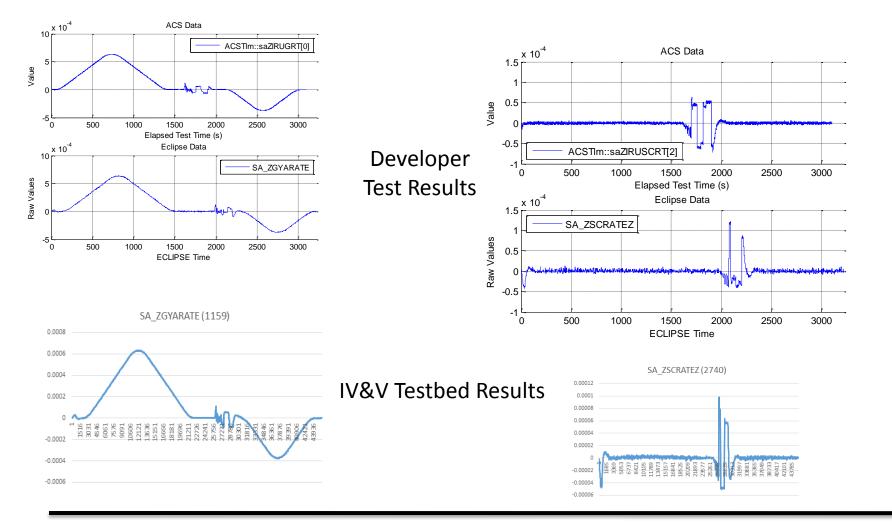
Test Environment Development Methodology


- Users must specify FSW and Database versions
- Users must specify spacecraft hardware configuration

Typical User-Supplied Inputs

Representative Test Environment

Simulator Components



3. Prepare Test Environment

NASA IV&V Program

Independent Test Environment Validation

4. Perform Testing and Analyze Results

NASA IV&V Program

Test Execution and Analysis

- Execute, Collect Results, and Analyze Results
- Adjust Test Planning as necessary for next iteration

Planning & Test Execution are iterative processes Build and release test environment in sequential iterations

Independent Testing Results

- Increased system and software understanding
- Increased IV&V Program Capability
- Measurable IV&V assurance
- Run-time experience with most critical flight software behaviors
- Validation of fault handling software
- Verification of software behavior and identification of software issues
 - Often process forces flight software down non-happy paths
 - High Severity Software Issue Found During Model Development
 - Execution of "non-flight" code in the flight binary
 - Flight computer model forced flight software down non-happy paths of the board support package (BSP)

Thank you!

- Introduction
 - NASA IV&V Program
 - NASA IV&V Process
 - Terms and Definitions
 - NASA IV&V Program Independent Testing Objectives
 - Why Independent Test?
- NASA IV&V Independent Testing
 - Plan the Testing
 - Acquire the Test Environment
 - Prepare the Test Environment
 - Execute Tests and Analyze Results

