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Introduction: The partitioning of multivalent ele-

ments in basaltic systems can elucidate the oxygen fu-

gacity (fO2) conditions under which basalts formed on 

planetary bodies (Earth, Moon, Mars, asteroids). Chro-

mium and V are minor and trace elements in basaltic 

melts, partition into several minerals that crystallize 

from basaltic melts, exist in multiple valence states at 

differing fO2 conditions, and can therefore be used as 

oxybarometers for basaltic melts. Chromium is mostly 

3+ in terrestrial basaltic melts at relatively high fO2 val-

ues (≥ IW+3.5), and mostly 2+ in melts at low fO2 val-

ues (≤ IW-1), such as those on the Moon and some as-

teroids [1]. At intermediate fO2s, (i.e., IW-1 to IW+3.5), 

basaltic melts contain both Cr3+ and Cr2+.  Vanadium in 

basaltic melts is mostly 4+ at high fO2, mostly 3+ at low 

fO2, and a mix of V3+ and V4+ at intermediate fO2 con-

ditions. Understanding the partitioning of Cr and V into 

silicate phases with changing fO2 is therefore critical to 

the employment of Cr and V oxybarometers.   

In this abstract we examine the equilibrium parti-

tioning of Cr and V between olivine/melt and pyrox-

ene/melt in experimental charges of a eucritic composi-

tion produced at differing fO2 conditions. This study 

will add to the experimental data on DCr and DV (i.e., 

olivine/melt, pyroxene/melt) at differing fO2, and in turn 

these D values will be used to assess the fO2 of eucrite 

basalts and perhaps other compositionally similar plan-

etary basalts.  

Samples and analytical techniques: The samples 

used in this study are experimental crystallization prod-

ucts from the Sioux County eucrite composition doped 

with 1000 ppm V and Sc [2]. The charges were pro-

duced at fO2 values of IW-1, IW, IW+2 and include both 

isothermal and cooling runs.  Isothermal charges were 

produced by first homogenizing the mix at temperatures 

above the liquidus (~1195 °C), air-quenched then put it 

back to the desired temperature and holding for 24 to 48 

hours. Cooling charges were made by first homogeniz-

ing above the liquidus, air-quenched then put it back to 

just below the liquidus at 1190 °C, (although our first 

attempts cooled from 1160 °C), and subsequently cool-

ing to the desired temperature at a rate of 1 °C/hr or 0.2 

°C/hr.  

Major and minor element compositions of olivine, 

pyroxene and melt were determined using a Cameca 

SX100 electron microprobe. WDS was performed using 

a voltage of 15 kV, beam current of 20 nA, and beam 

size of ~3 μm for minerals and melt. Counting times 

were 20s for major and minor elements and 120s for V 

and Sc. Natural minerals including forsterite, chromite, 

and amphibole were used as standards, while V and Sc 

were calibrated on the respective metals of each. Oli-

vine, pyroxene, and melt analyses were critically evalu-

ated as to proper wt.% oxide totals, stoichiometry, and 

charge balance based on ideal mineral formulas. DCr, 

DV, and DSc values were determined by measuring sev-

eral pairs of mineral rims and adjacent glass and then 

taking the average.  

Results: Figure 1 shows a typical experimental 

charge containing subhedral olivine grains (bright gray) 

and skeletal, “soda straw” pyroxenes (dark gray) in a 

matrix of melt (glass). In general, the charges shared a 

common silicate crystallization sequence of olivine 

crystallization around 1190 °C, followed by olivine + 

pyroxene at ~1180, and no change down to a tempera-

ture of at least 1130 °C. Plagioclase was only found in 

two charges, both produced at IW-1 and both cooling 

experiments. The first crystallized olivine, pyroxene 

and plagioclase when cooled from 1190 to 1150 °C at 1 

°C/hr and the second crystallized pyroxene and plagio-

clase when cooled from 1160 to 1100 °C at 1 °C/hr.  

 

Figure 1. BSE image of charge S12, produced isother-

mally at IW and 1163 °C. 

Discussion: Our silicate crystallization sequences 

differ from those found by Stolper [3], when he per-

formed isothermal melting experiments on the natural 

Sioux County meteorite.  Stolper found olivine crystal-

lizing first (1195 °C), followed closely by pyroxene at 

1180 and then plagioclase at 1170; olivine was not pre-

sent in runs below 1165 °C. So, our experiments differ 



from [3] in temperature of phase appearances, but also 

in the existence of olivine at low temperatures; we ex-

pected it to react with melt to form pyroxene [3].  We 

are presently performing more experiments and tweak-

ing variables such as homogenization temperature and 

time, cooling start temperature and cooling rate in order 

to address these issues. However, we have evaluated the 

current experiments and some useful partitioning infor-

mation is presented here.   

Table 1 presents Cr, Sc, and V wt. % oxide concen-

trations in olivine and melt for each charge. These ex-

periments all show homogenous olivine grains with ol-

ivine/melt KD FeO/MgO ≈ 0.35, which suggests the 

grains are approaching equilibrium with the melt for this 

iron-rich eucrite bulk composition [4]. DCr olivine/melt 

is about unity at IW-1, IW, and IW, even though the 

Cr2+/Cr3+ ratio is decreasing with increasing fO2. The 

reason for this is that DCr2+ and DCr3+ olivine/melt are 

about equal; Cr2+ substition into the olivine structure for 

Mg2+ or Fe2+ causes no charge balance problems but it 

is just a little big for the M1 site in olivine, while Cr3+ 

fits nicely into the olivine M1 site but requires charge 

balance [1]. These results are almost identical to those 

measured by [3] and are consistent with the predictions 

by [5].  

Our DSc olivine/melt values (Table 1) are not con-

sistent at all, which is most likely a consequence of at-

tempting to measure low concentrations of Sc in melt 

(i.e., near detection levels), which in turn can lead to er-

roneous DSc values. A linear equation by [6] relating 

DSc olivine/melt to DMgO olivine/melt predicts DSc = 

0.32.  Using the same equation and DMgO olivine/melt 

from our samples gives 0.32 to 0.37, which makes sense 

as DSc should not change with fO2 as it exists only as 

3+.    

Table 1 also shows decreasing DV olivine/melt with 

increasing fO2. This is consistent with V3+ being more 

compatible in olivine than V4+ [7]. The reason for this 

may be due to the substitutional couple in which one va-

cancy can accomodate 2V3+ cations, while one vacancy 

can only accommodate one V4+ cation [1].   

Table 2 presents Cr, Sc, and V wt. % oxide concen-

trations in pyroxene and melt for each charge. All the 

pyroxenes measured here are low-Ca pigeonites, with 

Wollastanite (Wo) values of approximately 5 to 8. DCr 

pyroxene/melt generally increases with increasing fO2 

in our charges. Cr3+ is more compatible in pyroxene than 

Cr2+ so these results are valid. Our D values are also 

comparable to values determined by [8], which are DV 

= 3.5 at IW-1, 4.3 at IW, and 5.0 at IW+1. Our values 

show a large spread from charge to charge and more 

careful analyses are needed to rectify this.   

Again, our DSc values are not consistent at all (Ta-

ble 2), and again this is most likely related to analytical 

error. The regression of [6], using DMgO pyrox-

ene/melt, predicts DSc = 1.3 for all charges. Using the 

same equation and DMgO pyroxene/melt from our 

charges yields comparable Ds of 1.2 to 1.5. 

Lastly, Table 2 shows that DV pyroxene/melt de-

creases with increasing fO2. This is agreeable with the 

notion that DV3+ is more compatible in pyroxene than 

V4+; which is probably because the charge balancing 

couple M1V3+ - IVAl is more compatible than in the py-

roxene structure than M1V4+ - 2IVAl owing to the charge 

balance couples [1] fO2. Our DV values at each fO2 are 

broadly consistent with those of [8], but the large varia-

tion in charges from the same fO2 indicate we need more 

detailed and careful analyses. 

Table 1.  DCr, DSc and DV olivine/melt vs. fO2.   

 
 

Table 2.  DCr, DSc and DV pyroxene/melt vs. fO2.   
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IW-1
T	(°C) Ol gl DCr Ol gl DSc Ol gl DV Charge

1180 0.263 0.274 0.97 0.019 0.017 1.42 0.099 0.149 0.67 S15

1170 0.268 0.263 1.03 0.025 0.057 0.45 0.093 0.150 0.62 S16
1160 0.246 0.237 1.04 0.017 0.030 0.57 0.056 0.095 0.59 S17
1150 0.226 0.220 1.04 0.020 0.020 1.22 0.061 0.110 0.56 S18
1130 0.225 0.195 1.15 0.020 0.118 0.17 0.075 0.105 0.71 S7

0.246 0.238 1.04 0.020 0.048 0.76 0.077 0.122 0.63
IW

1190 0.231 0.220 1.06 0.020 0.044 0.45 0.044 0.119 0.38 S9
1180 0.167 0.164 1.01 0.019 0.101 0.18 0.033 0.088 0.38 S10
1175 0.193 0.200 0.97 0.020 0.044 0.49 0.034 0.099 0.34 S13
1170 0.159 0.165 0.97 0.022 0.116 0.19 0.040 0.092 0.43 S11
1163 0.162 0.161 1.01 0.018 0.095 0.19 0.037 0.081 0.45 S12
1130 0.142 0.131 1.08 0.022 0.105 0.21 0.032 0.078 0.42 S8

0.176 0.173 1.02 0.020 0.084 0.28 0.037 0.093 0.40
IW+2
1150 0.107 0.087 1.24 0.019 0.047 0.42 0.030 0.105 0.29 S20

0.107 0.087 1.24 0.019 0.047 0.42 0.030 0.105 0.29

Cr VSc

IW-1
T	(°C) pyx gl DCr pyx gl DSc pyx gl DV Charge
1190 0.669 0.295 2.31 0.075 0.035 2.40 0.220 0.105 2.12 S14

1180 0.828 0.370 2.24 0.068 0.022 3.23 0.369 0.165 2.23 S15
1170 0.609 0.187 3.34 0.088 0.046 1.92 0.285 0.132 2.15 S16
1160 0.595 0.204 2.93 0.066 0.028 2.39 0.186 0.090 2.12 S17
1150 0.678 0.253 3.03 0.084 0.024 6.46 0.308 0.117 2.79 S18
1130 0.706 0.195 3.61 0.137 0.118 1.17 0.382 0.105 3.64 S7

1100 0.606 0.173 3.52 0.185 0.145 1.28 0.209 0.063 3.32 S6

0.670 0.240 3.00 0.100 0.060 2.69 0.280 0.111 2.63 AVG

IW
1170 0.459 0.165 2.79 0.090 0.116 0.77 0.169 0.090 1.87 S11
1163 0.685 0.161 4.26 0.126 0.095 1.32 0.257 0.081 3.17 S12
1130 0.667 0.131 5.11 0.121 0.105 1.16 0.243 0.078 3.11 S8

0.604 0.152 4.05 0.112 0.105 1.09 0.223 0.083 2.72 AVG

IW+2
1180 0.509 0.191 2.87 0.069 0.039 2.14 0.142 0.111 1.30 S21
1150 0.534 0.105 5.50 0.113 0.044 2.75 0.212 0.112 1.91 S20

0.521 0.148 4.18 0.091 0.042 2.44 0.177 0.111 1.61 AVG

Cr Sc V


