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Introduction:  The COSIMA instrument [1] on 

board the Rosetta spacecraft [2] collected and analyzed 

samples of individual particles from the coma of Comet 

67P/ Churyumov-Gerasimenko. Initial results of the 

analysis of several particles have been presented else-

where [3–6] while analyses of the organic component 

of the dust particles has been shown to compare favor-

ably to laboratory spectra of IOM extracted from the 

Orguil and Murchison meteorites [7]. Here we will 

compare the spectra of the same two particles to labor-

atory spectra of organic grain coatings produced via 

Surface Mediated Reactions of CO, H2 and N2 on 

amorphous iron silicate grains [8]. 

The Stardust mission [9] unambiguously estab-

lished that small refractory dust particles were trans-

ported from the innermost regions of the primitive so-

lar nebula to the regions where Kuiper-belt comets 

formed [10] as had been previously predicted [11-13]. 

Unfortunately it is much more difficult to pinpoint the 

origin of the organics detected in Stardust grains [14] 

due to the high encounter velocity of the Stardust mis-

sion with Comet 81P/Wild-2. Dust grains from Comet 

67P/Churyumov-Gerasimenko were collected much 

more gently and so provide more representative sam-

ples of the refractory organic components of comets. 

We do note however that the most volatile carbon-

containing molecules, such as CO, CO2, CH4, etc. were 

lost to some ill-defined extent prior to analyses. 

COSIMA Analyses: COSIMA detected more than 

35,000 particles and fragments of particles collected in 

the vicinity of comet 67P/Churyumov–Gerasimenko and 

424 analyzed by SIMS in positive mode and 365 in nega-

tive mode. These particles show various morphologies 

and mineral compositions, inferred from time-of-flight 

secondary ion mass spectrometry (TOF-SIMS). Figure 1 

presents findings on the organic content of two repre-

sentative particles, named Kenneth and Juliette [7]. Ken-

neth was collected between 11 and 12 May 2015, while 

Juliette was collected between 23 and 29 October 2015. 

Both were analysed a few weeks after their collection and 

both are larger than 100 microns in diameter. Figure 1 

shows a comparison of the mass spectra measured on the 

Kenneth and Juliette particles (in red) and those measured 

nearby on the porous gold sub        (    ‘       ’)    

which the particles were collected (in black). We note 

that the COSIMA instrument continuously rasters 

across the target during analyses. The absolute intensi-

ty of secondary ions decreases as the beam moves from 

the target onto a particle and the composition of the 

secondary ions changes to reflect the composition of 

the grain.  

 
Figure 1 | Comparison of cometary and meteoritic 

TOF-SIMS data. The spectra in red were acquired on 

two cometary particles, Kenneth and Juliette, and on 

two IOM samples, extracted from the Orgueil and the 

Murchison meteorites. The spectra in black have been 

acquired on the porous gold substrates on which the 

cometary particles were collected and IOM samples 

prepared. The spectra are normalized to the intensity of 

characteristic mass fragments  of polydimethylsiloxane 

(PDMS) a, Positive-ion spectra. b, c, Enlargements 

from a. d, Negative-ion spectra. A full discussion of 

Figure 1 can be found in [7]. 

Analyses of COSIMA Spectra: In an attempt to 

match the spectra of carbonaceous grains collected 

from Comet 67P/ Churyumov-Gerasimenko, the 

COSIMA Team obtained spectra from a wide range of 



plausible analog materials using the COSIMA instru-

ment reference model (COSIMA RM) in the laboratory 

at the Max Planck Institute in Gottingen. Spectra of 

IOM from the Murchison and Orguil meteorites are 

shown in Figure 1. Spectra of representative aliphatic 

and aromatic molecules and a spectrum of carbon  

formed via surface mediated reactions [8] on amor-

phous iron silicate smokes are shown in Figure 2. All 

spectra are dominated by surface carbons and the ter-

minal hydrogen atoms for each sample. 

 

 

 

 
Figure 2. Carbon mass spectra for (A) the long-chain ali-

phatic molecule tetracosane (6)  (B) carbon-coated grains on 

amorphous iron silicate smokes produced via surface mediat-

ed reactions of CO+N2+H2 at 723K and (C) the aromatic 

molecule anthracene (6). Each spectrum is normalized to 

mass 15. Red denotes sample spectra; black is background. 

Inspection of Figure 1 shows that the peak heights 

for mass 12 in Kenneth and Juliette are higher than for 

masses 13, 14 and 15 which are all about the same in-

tensity. Figure 2 demonstrates that sp
2
 (aromatic) car-

bon comes closer to matching this pattern whereas sp
3
 

(aliphatic hydrocarbons) shows a minimum at mass 12 

followed by monotonically rising peaks at mass 13 and 

14. The IOM spectra show massive peaks at mass 12, 

with  a small, but monotonically rising progression of 

peaks at mass 13, 14  and 15. The mass spectrum of the 

carbonaceous matter produced via surface mediated 

reactions is fairly flat; a mix of sp
2
 and sp

3
 carbon. 

Origin of non-volatile carbonaceous grains: 

Non-volatile carbon on grains collected from Comet 

67P/ Churyumov-Gerasimenko analyzed by COSIMA 

is consistent with materials produced at high tempera-

tures. Such organics may have formed in the innermost 

regions of the primitive solar nebula by surface medi-

ated reactions of CO, N2 and H2.. The organics ana-

lyzed by COSIMA do not resemble the wide range of 

organic molecules originally expected based upon the 

assumption that such organics would be produced un-

der low temperature conditions in the outer nebula or 

in the interstellar medium [6]. Low temperatures pro-

duce more aliphatic carbon. These grains show a mix 

of sp
2
 and sp

3
 carbon and implies that they may have 

seen  temperatures sufficiently high to either drive off 

hydrogen or to prevent hydrogenation. An alternative 

may be that they have seen extremely high doses of 

radiation [15]. 

In summary, the most volatile (and most aliphatic) 

organic molecules were likely lost soon after the grains 

were captured on the COSIMA collector leaving the 

more refractory carbon of intermediate and low volatil-

ity for analysis. Similarly, the IOM represents organic 

material from which the most labile (and again, the 

more aliphatic) molecules have been removed, leaving 

the more complex species behind. Analog carbon pro-

duced via surface mediated reactions was formed at 

725K, but has not been further processed. It contains a 

balance of intermediate and low volatility organics that 

is a mixture of both aromatic and aliphatic components. 

References: [1] Kissel, J. et al. Space Sci. Rev.128, 

823–867 (2007). [2]  http://sci.esa.int/rosetta [3]  Schulz, 

R. et al. Nature 518, 216–218 (2015). [4] Langevin, Y. 

et al. Icarus 271, 76–97 (2016). [5] Hilchenbach, M. et 

al. Astrophys. J. 816, L32 (2016).  [6] Le Roy, L. et al. 

Planet. Space Sci. 105, 1–25 (2015). [7] Fray, N., 

Bardyn A., Cottin, H., et al., Nature 538,72–74 (2016). 

[8] J.A. Nuth, N.M. Johnson F.T. Ferguson and A. 

Carayon, MAPS 51, 1310–1322. [9] 

http://stardust.jpl.nasa.gov/home/index. [10] M. E. 

Zolensky, T. J. Zega, H. Yano et al., Science  314, 

1735-1739  (2006) [11] J.A. Nuth, 1999. Lunar Planet. 

Sci. 30 (# 1726, CD-ROM). [12] J.A. Nuth, 2001. Am. 

Sci. 89, 228–235. [13] J.A. Nuth and N.M. Johnson, 

2006. Icarus 180, 243–250. [14] S.A. Sandford, J. 

Aléon, C.M. O'D. Alexander, et al., 2006, Science 314, 

 1720-1724. [15] Jenniskens, P., Baratta, G.A., Kouchi, 

A., Groot, M.S.D., Greenberg, J.M. and Strazzulla, G. 

(1993) A&A 273, 583-600. 

A 

B 

C 

http://sci.esa.int/rosetta
http://stardust.jpl.nasa.gov/home/index.%20%5b10

