Cryogenic High Accuracy Refractive Measuring System (CHARMS): Recap of Recent Work

Kevin H. Miller (GSFC Optics Branch) March 21st, 2017

Manuel A. Quijada (GSFC Optics Branch)

Douglas B. Leviton (Leviton Metrology Solutions, Inc.)

CHARMS Capabilities

- Absolute minimum deviation refractometer (in vacuum)
- Wavelength coverage: 0.35 to 5.6 μm
- Temperature coverage: 15 K (using LHe) to 340⁺ K (67 C)
- Single measurement ABSOLUTE accuracies as good as 5 x 10⁻⁶ at cryo (depending on material)
- Measures absolute refractive index, $n(\lambda, T)$
- Accurate values of thermo-optic coefficient, dn/dT, and spectral dispersion, $dn/d\lambda$, derived from measured n(T)

CHARMS: Operation and Capabilities

- CHARMS is a minimum deviation refractometer
- Five simple steps:
- 1. Measure the apex angle of the prism
- 2. Establish the condition of min deviation
- 3. Measure angle of undeviated beam
- 4. Measure angle of deviated beam
- 5. Compute deviation angle; compute index

$$n = \frac{\sin(\frac{\alpha+\delta}{2})}{\sin(\frac{\alpha}{2})}$$

CHARMS optical layout

Top view of sample chamber

Eye level with prism

Sample Temperature, T

- sample sandwiched between two cryogen-cooled copper plates at essentially same T
- two T sensors on top of prism
- T_{sample} attributed to reading from sensor halfway up side of non-refracting face

Laser Driven Plasma Light Source

Energetiq 99

- CW laser heats Xenon plasma
- Electrodeless
- 100 micron plasma size

Wavelength Calibration & Encoder Technology

CHARMS Measurements of Heraeus Homosil

Sellmeier Equation

Derived Properties of Heraeus Homosil

Example of Bookkeeping Error Budget

ind	ex n	apex	α de	eviatio	n δ di	n/dλ	dn/dT	dn/do	u dn	/dð	dλ	dT	da		dδ]	→	(dn
					SENSITIVITIE	es 🕨	/					/	FOR SPECIFIE	D PRISM		FOR SPECIF	ED PRISM		
index n	apex a	alpha	delta d		dn/dwv	dn/dT	dn/da	dn/d	dwv	dn(dwv)	dT	dn(dT)	da		dn(da)	dd	-	dn(dd)	dn r.s.s.
1.4574	10.0 deg	0.175 rads	4.595 deg	0.080 rads	0.00040/nm	0.000120/K	-2.64/rad	5.690/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -6.4E-06	0.00150 deg	5.4 sec ###	1.5E-04	1.7E-04
1.4574	20	0.349 rads	9.319 deg	0.163 rads	0.00040/nm	0.000120/K	-1.35/rad	2.786/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -3.3E-06	0.00150 deg	5.4 sec ###	7.3E-05	9.5E-05
1.4574	30	0.524 rads	14.321 deg	0.250 rads	0.00040/nm	0.000120/K	-0.93/rad	1.789/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -2.3E-06	0.00150 deg	5.4 sec ###	4.7E-05	7.4E-05
1.4574	40	0.698 rads	19.796 deg	0.346 rads	0.00040/nm	0.000120/K	-0.73/rad	1.267/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -1.8E-06	0.00150 deg	5.4 sec ###	3.3E-05	6.4E-05
1.4574	50	0.873 rads	26.038 deg	0.454 rads	0.00040/nm	0.000120/K	-0.63/rad	0.932/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -1.5E-06	0.00150 deg	5.4 sec ###	2.4E-05	5.9E-05
1.4574	58	1.012 rads	31.912 deg	0.557 rads	0.00040/nm	0.000120/K	-0.58/rad	0.730/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -1.4E-06	0.00150 deg	5.4 sec ###	1.9E-05	5.6E-05
2.6	10	0.175 rads	16.195 deg	0.283 rads	0.00040/nm	0.000120/K	-9.27/rad	5.588/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -2.3E-05	0.00150 deg	5.4 sec ###	1.5E-04	1.7E-04
2.6	15	0.262 rads	24.677 deg	0.431 rads	0.00040/nm	0.000120/K	-6.27/rad	3.603/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -1.5E-05	0.00150 deg	5.4 sec ###	9.4E-05	1.2E-04
2.6	20	0.349 rads	33.678 deg	0.588 rads	0.00040/nm	0.000120/K	-4.80/rad	2.569/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -1.2E-05	0.00150 deg	5.4 sec ###	6.7E-05	9.1E-05
2.6	25	0.436 rads	43.491 deg	0.759 rads	0.00040/nm	0.000120/K	-3.95/rad	1.910/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -9.7E-06	0.00150 deg	5.4 sec ###	5.0E-05	7.7E-05
2.6	30	0.524 rads	54.587 deg	0.953 rads	0.00040/nm	0.000120/K	-3.42/rad	1.429/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -8.4E-06	0.00150 deg	5.4 sec ###	3.7E-05	6.7E-05
3.4	10	0.175 rads	24.475 deg	0.427 rads	0.00040/nm	0.000120/K	-13.95/rad	5.479/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -3.4E-05	0.00150 deg	5.4 sec ###	1.4E-04	1.6E-04
3.4	14	0.244 rads	34.958 deg	0.610 rads	0.00040/nm	0.000120/K	-10.11/rad	3.734/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -2.5E-05	0.00150 deg	5.4 sec ###	9.8E-05	1.2E-04
3.4	18	0.314 rads	46.265 deg	0.807 rads	0.00040/nm	0.000120/K	-8.03/rad	2.707/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -2.0E-05	0.00150 deg	5.4 sec ###	7.1E-05	9.6E-05
3.4	22	0.384 rads	58.895 deg	1.028 rads	0.00040/nm	0.000120/K	-6.75/rad	1.994/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -1.6E-05	0.00150 deg	5.4 sec ###	5.2E-05	8.0E-05
4.0	10	0.175 rads	30.806 deg	0.538 rads	0.00040/nm	0.000120/K	-17.48/rad	5.377/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -4.3E-05	0.00150 deg	5.4 sec ###	1.4E-04	1.6E-04
4.0	12.5	0.218 rads	39.130 deg	0.683 rads	0.00040/nm	0.000120/K	-14.13/rad	4.134/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -3.5E-05	0.00150 deg	5.4 sec ###	1.1E-04	1.3E-04
4.0	15	0.262 rads	47.947 deg	0.837 rads	0.00040/nm	0.000120/K	-11.92/rad	3.267/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -2.9E-05	0.00150 deg	5.4 sec ###	8.6E-05	1.1E-04
4.0	17.5	0.305 rads	57.461 deg	1.003 rads	0.00040/nm	0.000120/K	-10.39/rad	2.608/rad	0.10 nm	4.0E-05	0.1 K	1.2E-05	0.00014 deg	0.5 sec	# -2.5E-05	0.00150 deg	5.4 sec ###	6.8E-05	9.5E-05

 uncertainty governed by all eight quantities in the red box for each measurement for a given specimen (green box)

> so, a refractometer should <u>not</u> list a single number for accuracy

Measurement Uncertainties

Fused silica is not fused silica is not fused silica ...

Motivation: Transiting Exoplanet Survey Satellite (TESS)

- Planet finder
- 2017 Launch date (Cape Canaveral, FL)
- 4 identical cameras 90° X 90° FOV
- λ : 0.6 1.0 µm; Temp:183—213 K
- λ: 0.42 1.1 μm; Temp:120—300 K

Ohara Glasses

S-LAH55, S-LAH55V, S-LAH59

Index Comparison: Ohara MINUS CHARMS

Ohara Optical Glass Catalog, http://Oharacorp.com/

Cryogenic Index Comparison: Yamamuro MINUS CHARMS

Yamamuro, T. et al., Optical Engineering 45(8), 083401 (2006)

References

- Miller, K. H., Quijada M. A., Leviton D. B., "Cryogenic refractive indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses", Proc. SPIE 9578, (2015).
- Leviton D. B., Miller K. H., Quijada, M. A., and Groff T. D., "Temperature-dependent refractive index measurements of L-BBH2 glass for the Subaru CHARIS integral field spectrograph ", *Proc. SPIE* **9578**, (2015).
- Leviton D. B., Miller K. H., Quijada, M. A., and Grupp F. U., "Temperature-dependent refractive index measurements of CaF₂, Suprasil 3001, and S-FTM16 for the Euclid near-infrared spectrometer and photometer ", *Proc. SPIE* **9578**, (2015).

Backup

CHARMS measurements of CaF₂ (Euclid)

CHARMS measurements of S-FTM16 (Euclid)

CHARMS measurements of Suprasil 3001 (Euclid)

25