

Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory

Tadas Bartkus, Jen-Ching Tsao Ohio Aerospace Institute

Peter Struk, Judith Van Zante NASA Glenn Research Center

Aviation, 13-17 June 2016 Washington, D.C.

Outline

- Introduction
- Model Formulation
- Sample Simulation
- Model/Experiment Comparisons
 - <u>Preliminary</u> Tests to Fundamental ICI Run May 2015 PSL
 - 3 Sweeps (TWC, RH, T_{water})
 - Particle size comparison
- Summary

Introduction

- Many engine power-loss events reported since the 1990's
- Mason et al. hypothesized how power-loss events can result from ice crystals entering the engine core
- Ingestion of ice into engine is studied at NASA PSL and elsewhere
- Observed environmental conditions changed with cloud activation
 - Gas temperature change
 - Humidity change
- Hypothesis: Thermal interaction between air and cloud
- Model previously written to simulate NRC RATFac
- Objective: Understand the air cloud interactions in PSL tunnel

Model Formulation – General Description

- Simulates PSL icing tunnel
- Model couples air and cloud particle conservation eqs
 - Mass, energy fully coupled
 - Air is treated as ideal compressible gas
 - Isentropic equations used to solve ρ_{air} , v_{air} , T_{air} , P
- Full particle size distributions used
- "air" = humid air = air + vapor

Model Formulation - Assumptions

- Air and particle flow are steady and one dimensional
- Dry air and water vapor are ideal gases
- Air (air + vapor) is well mixed
- Tunnel is adiabatic and mass is conserved
- Particle size distribution is characterized by a discrete set of diameters
- Particles are evenly spaced
- All particles are perfectly spherical
- Particle aggregation and breakup through collision are negligible
- Particles are injected in the direction of the flow and remain entrained
- Temperature is uniform within the particle
- Mixed phase particles are spatially homogeneous in water/ice content
- Evaporation, condensation occur at the particle surface at particle temperature
- The flow of particles and gas is a continuous stream

Model Formulation – *PSL Description*

Tunnel Controllability

- ±0.3 kPa (.05 psia)
- ± 0.5 °C (1 °F)
- ± 1% RH

Model Formulation – *Experiment Configurations*

2 Configurations – May 2015

Multi-element Probe

Cloud Droplet Probe

Model Formulation – *Differential Expressions*

Model Formulation – *Differential Expressions*

Model Formulation - Algorithm

- Written in MATLAB version R2015b
- Solves conservation differential equations using built-in ODE45 solver
- Numerical relative and absolute convergence tolerance of 10⁻⁸
- Mass transferred between the gas and particle(s) balanced to 10⁻¹⁵
- Energy transferred between the gas and particle(s) balanced to 10⁻⁴
 - Physical accuracy dependent on accuracy of property values (C_p, L_{heat}, etc.)

Sample Simulation

Model/Experiment Comparison – TWC_{bulk} Sweep

Takeaways:

 $\Delta Twb_{0,e} =$

Model/Experiment Comparison – *RH* Sweep

Model/Experiment Comparison – *T_{water}* Sweep

Model/Experiment Comparison – Particle Size

	Min	Max
<i>v_e</i> (m/s)	68	192
P_s (kPa)	32.4	84.1
T_s (^O C)	-29	4
RH_0 (%)	40	50
$T_{water}(^{O}C)$	7	82
TWC_{bulk} (g/m ³)	0.5	1.3

Initial MVD = $15 \ \mu m$

Takeaway: Good MVD_e agreement for $MVD_i = 15 \ \mu m$

Summary

- Model written to understand Air Cloud interactions in PSL
- Model predicts to within 30% of measured changes in humidity and temperature
- Model predicted satisfactorily for melt ratio
 - Some disagreement for elevated T_{water} tests
- Good agreement with particle size measurements
- Twb₀ slight increase, important to determine cloud phase
- Model guided development of test matrix for Fundamental Physics of ICI 2016 tests

Acknowledgements

- The authors wish to acknowledge the Advance Air Transport Technology Project (AATT) of NASA's Advanced Air Vehicle's program for financial support of this work.
- I would like to thank my Icing Branch colleagues at NASA GRC for technical guidance.