

Ice-Accretion Test Results for Three-Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

Andy Broeren and Mark Potapczuk NASA Glenn Research Center

> Sam Lee Vantage Partners, LLC

Adam Malone and Ben Paul Boeing Commercial Airplanes

Brian Woodard University of Illinois at Urbana-Champaign

AIAA 8th ASE Conference

Washington, D.C.

www.nasa.gov

Outline

- Introduction
- Objective and Approach
- Hybrid Model Design
- Experimental Methodology
- Aerodynamic Calibration Results
- Ice Accretion Results
- Summary
- Acknowledgements

Introduction

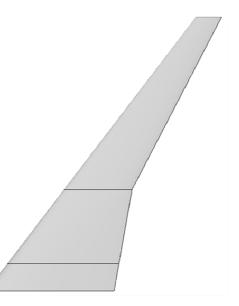
- Development and use of 3D icing simulation tools.
- Lack of ice accretion and aerodynamic data for largescale, swept wing geometries.
- Aerodynamic understanding important for evaluating efficacy of 3D icing simulation tools.
- Multi-faceted research effort called SUNSET II.

Objective and Approach

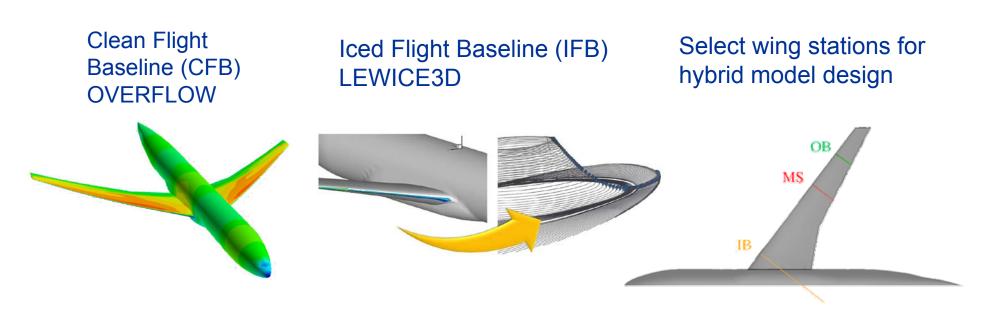
Objective

• Generate a database of ice-accretion geometry for large-scale, swept wings.

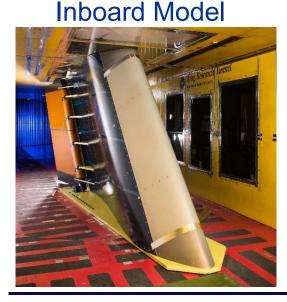
Approach


- Select baseline large-scale, swept-wing geometry.
- Identify three spanwise stations of interest—Inboard, Midspan and Outboard.
- Design hybrid or truncated wing-section models for IRT test section.
- Conduct ice-accretion testing in IRT.
- Measure ice geometry with 3D scanning technique.

Common Research Model (CRM)


- Commercial transport class configuration.
- Contemporary transonic supercritical wing design.
- Publically available and otherwise unrestricted for world-wide distribution.
- A 65% scale CRM was selected as the full-scale, reference swept-wing geometry for this research.
- CRM65 size airplane is comparable to Boeing 757.

Hybrid Model Design


• Design hybrid models to generate full-scale ice accretion.

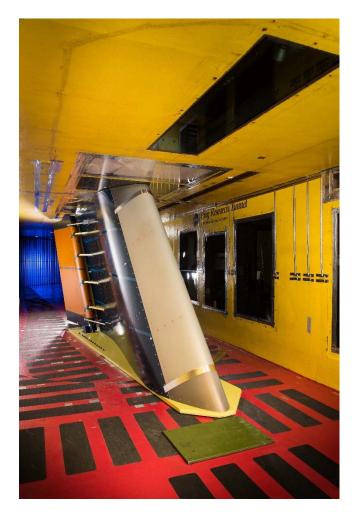
Inboard, 20% Semispan	Midspan, 64% Semispan	Outboard, 83% Semispan
Scale Factor = 2.25	Scale Factor = 2	Scale Factor = 1.5

Experimental Methodology

- Ice-accretion testing was conducted at NASA Icing Research Tunnel (IRT) that simulates flight through an icing cloud at pressure-altitudes near sea level.
- IRT test section is 6 ft high by 9 ft wide by 20 ft long.
- Models were installed vertically from floor-to-ceiling with small gaps to provide clearance for angle of attack and flap angle changes.

Midspan Model

Outboard Model

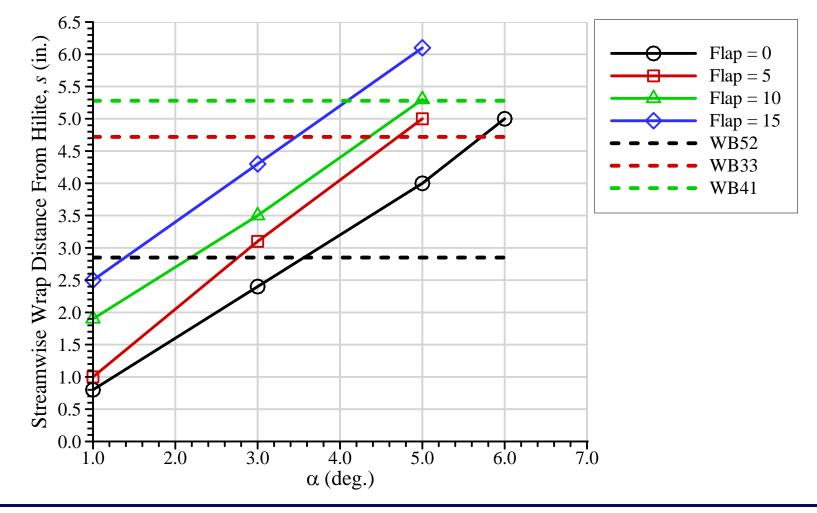


Experimental Methodology

Models Description

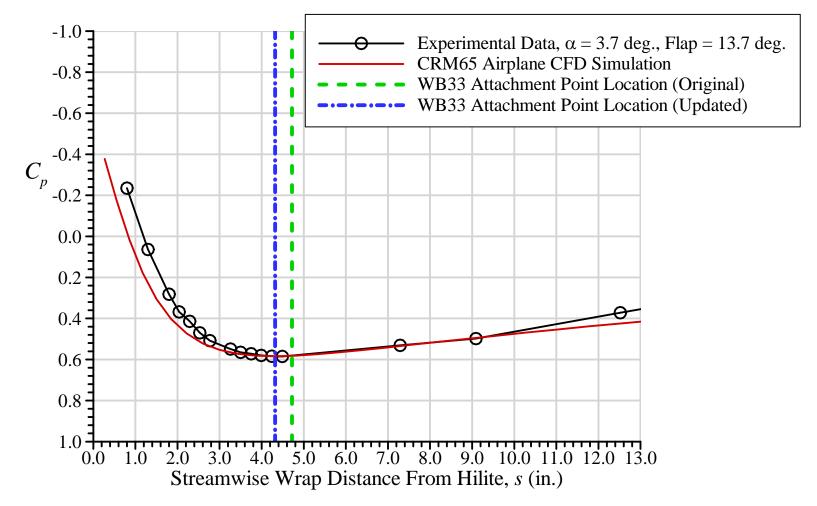
- Streamwise pressure taps located at three spanwise stations
 - 18, 36 and 54 inches above the test-section floor.
- Single-element, slotted flap with antiicing heater.
- Two removable leading edges
 - Pressure instrumentation
 - Icing

Model Section	Streamwise Chord Length (ft)	Model Scale Factor
Inboard	13.5	2.25
Midspan	6.3	2.0
Outboard	6.2	1.5

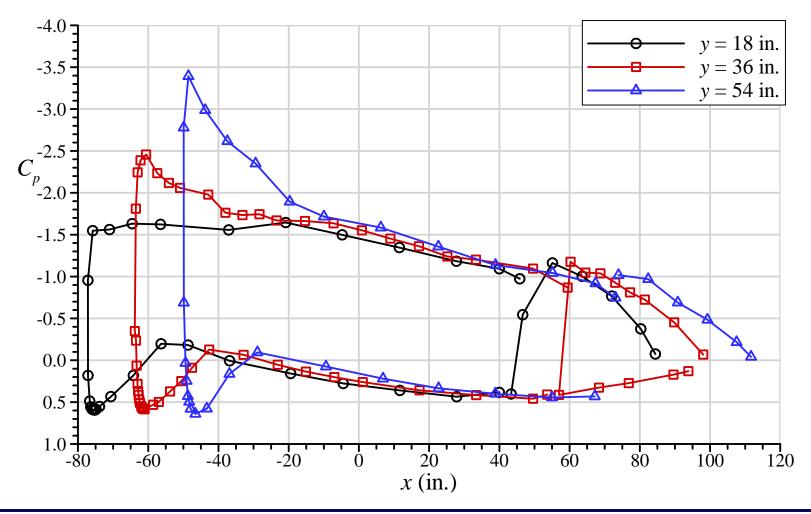


- An aerodynamic calibration of the hybrid models was performed in order to match the attachment point location on the IRT models to the corresponding location on the CRM65, full-scale reference airplane.
- The model incidence and flap angles were systematically varied to track the attachment line location at the 36-inch model centerline station.
- The attachment line location was defined as the location of the maximum pressure coefficient.

		Streamwise W	Streamwise Wrap Distance—Inches From Hilite							
Flight Case	AoA deg.	Inboard Midspan Model Model		Outboard Model						
WB33	3.7	4.72	1.66	1.06						
WB41	4.4	5.28	1.91	1.42						
WB52	2.1	2.85	0.57	0.36						



• Aerodynamic calibration for Inboard Model.



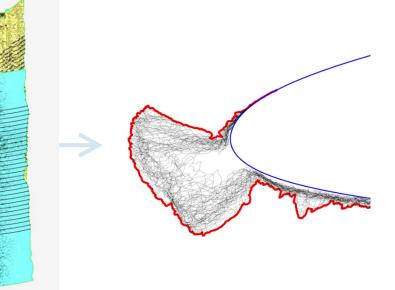
• Surface pressure data near attachment point for Inboard Model.

• Surface pressure data for Inboard Model.

Icing Test Matrix Development

- Generate range of ice accretion.
- Hold and descent for CRM65 airplane in App. C.
- Large range of temperatures, limited variations in MVD and LWC.
- Large model size limited maximum speed in IRT.
 - Conditions were scaled to IRT test speed (130 knots for most cases).
 - Effects of velocity scaling were investigated for Midspan and Outboard models.

Baseline Flight Reference Conditions


Case	AoA deg.	Altitude (ft)	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
WB33	3.7	10,000	230	-18.4 to 1.1	-25.0 to -6.0	20	0.17 to 0.55	45
WB41	4.4	5,000	220	-6.0 to 1.1	-10.0 to -3.0	20	0.51	45
WB52	2.1	5,000	260	-4.1	-13.0	20	0.36	4

www.nasa.gov

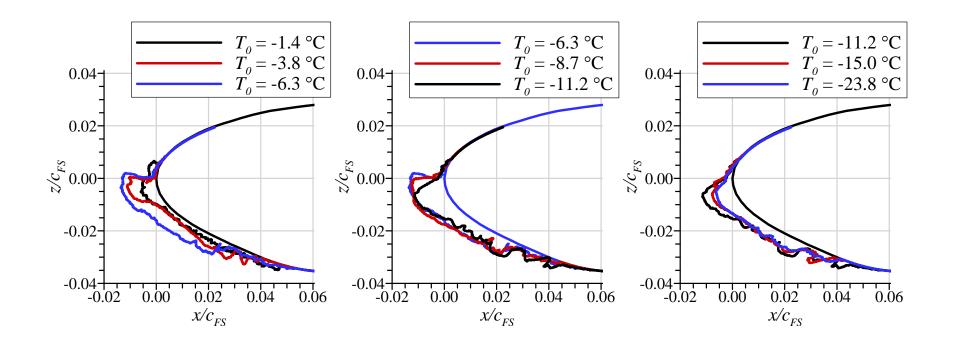
- Ice accretion was documented with photographs and 3D scans.
- 3D scan data were post-processed to provide the Maximum Combined Cross Section (MCCS).

Time lapse video—Midspan Model

Run	AoA	TAS	Total Temp	Static Temp	MVD	LWC	Exp. Time
	deg.	Knots	deg. C	deg. C	µm	g/m³	min.
TG2450	3.7	130	-6.3	-8.5	25	1.0	29

Inboard Model—Effect of Temperature

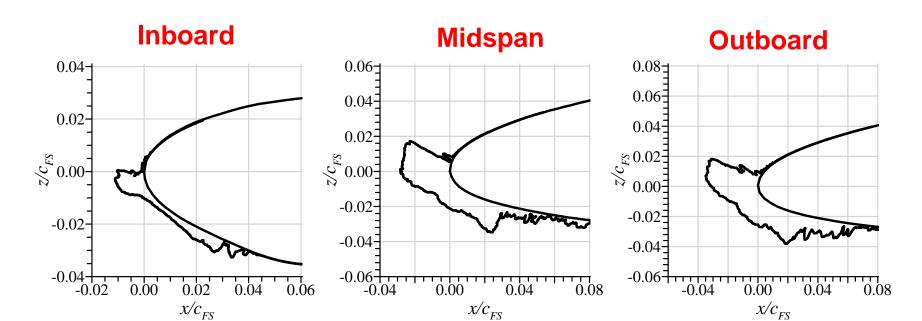
Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
TG2421	3.7	130	-3.8	-6.0	25	1.0	29
TG2402	3.7	130	-8.7	-11.0	25	1.0	29
TG2415	3.7	130	-23.8	-25.0	25	1.0	29



Inboard Model—Effect of Temperature

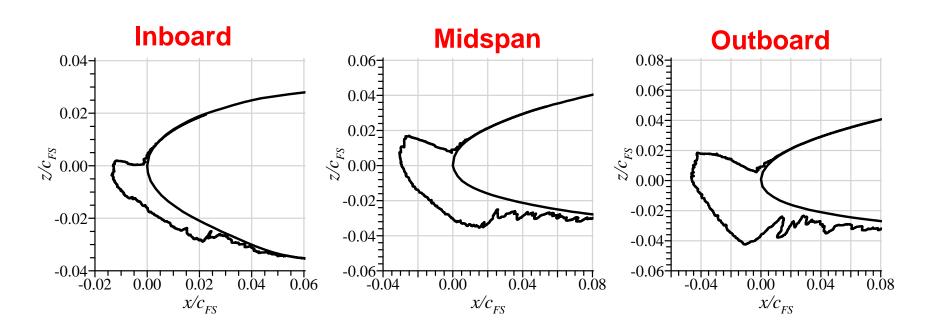
Run	AoA	TAS	Total Temp	Static Temp	MVD	LWC	Exp. Time
	deg.	Knots	deg. C	deg. C	µm	g/m³	min.
-	3.7	130	-1.4 to -23.8	-3.6 to -25.0	25	1.0	29

ld	Identical Condition Run on Each Model—Total Temperature = -3.8°C												
	Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m ³	Exp. Time min.					
	TG2421	3.7	130	-3.8	-6.0	25	1.0	29					
	TH2438	3.7	130	-3.8	-6.0	25	1.0	29					
	TI2462	3.7	130	-3.8	-6.0	25	1.0	29					

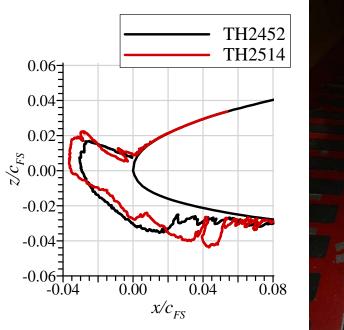


k	dentical	Con	dition	Run	on	Eacl	n Model–	-Total	Te	mperature	= -3.8°C	
												Τ.

	Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
Γ	TG2421	3.7	130	-3.8	-8.5	25	1.0	29
	TH2438	3.7	130	-3.8	-8.5	25	1.0	29
	TI2462	3.7	130	-3.8	-8.5	25	1.0	29

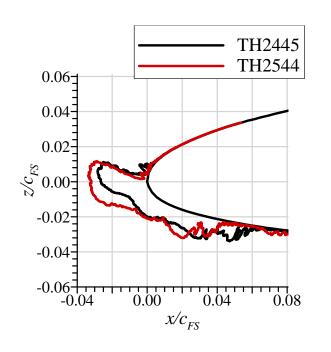


ld	Identical Condition Run on Each Model—Total Temperature = -6.3°C												
	Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.					
	TG2411	3.7	130	-6.3	-8.5	25	1.0	29					
	TH2452	3.7	130	-6.3	-8.5	25	1.0	29					
	TI2479	3.7	130	-6.3	-8.5	25	1.0	29					


ld	Identical Condition Run on Each Model—Total Temperature = -6.3°C												
	Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.					
	TG2411	3.7	130	-6.3	-8.5	25	1.0	29					
	TH2452	3.7	130	-6.3	-8.5	25	1.0	29					
	TI2479	3.7	130	-6.3	-8.5	25	1.0	29					

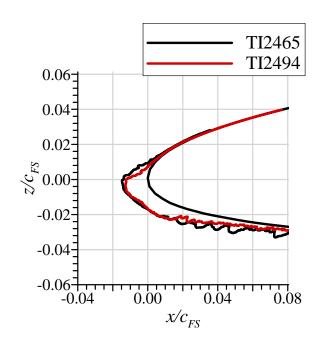
Maximum Scallop vs. App. C Scaled Conditions on Midspan Model

Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
TH2452	3.7	130	-6.3	-8.5	25	1.0	29
TH2514	3.7	130	-3.1	-5.3	27	0.91	45



Effect of Velocity on Ice Accretion on Midspan Model

Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
TH2445	3.7	130	-3.1	-5.3	27	0.91	32
TH2444	3.7	180	-2.0	-6.0	24	0.65	32



Effect of Velocity on Ice Accretion on Outboard Model

Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
TI2465	3.7	130	-17.9	-20.1	25	0.60	23
TI2494	3.7	232	-11.2	-18.3	20	0.30	25.3

Summary

- A large database of ice accretion geometry was generated for three sections of the CRM65 large-scale, swept wing.
- Hybrid models with full-scale leading-edges were used to obtain fullscale ice accretion at the Inboard (20%), Midspan (64%) and Outboard (83%) stations.
- The ice accretion database consists of the 3D ice accretion geometry along with surface pressure measurements on the clean hybrid models at corresponding aerodynamic conditions.
- For most cases, each model was subjected to identical icing conditions which limited the speed to 130 knots because of the large size of the Inboard model.
- The Appendix C-based icing conditions were scaled from flight reference values to account for the difference in velocity.
- A limited number of higher-velocity cases were run on the Midspan and Outboard models—results were limited by ice shedding.

Acknowledgements

Sponsor Organizations:

- NASA—Advanced Air Transport Technology Project
- FAA
- ONERA

Supporting Organizations:

- Boeing
- University of Illinois
- University of Virginia
- University of Washington