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Desert dust aerosols affect Earth’s global energy balance through interactions with radiation1,2, 

clouds3,4, and ecosystems5. But the magnitudes of these effects are so uncertain that it remains 

unclear whether atmospheric dust has a net warming or cooling effect on global climate1,4,6. 

Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past 

century have slowed or accelerated anthropogenic climate change4,7-9, and the climate impact of 

possible future alterations in dust loading is similarly disputed9,10. Here we use an integrative 

analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct 

interactions with radiation. Using a combination of observational, experimental, and model data, 

we find that atmospheric dust is substantially coarser than represented in current climate models. 

Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling 

than the ~0.4 W/m2 estimated by models in a current ensemble2,11-13. We constrain the dust DRE to -

0.20 (-0.48 to +0.20) W/m2, which suggests that the dust DRE produces only about half the cooling 

that current models estimate, and raises the possibility that dust DRE is actually net warming the 

planet.  

The radiative effect of dust on global climate depends sensitively on both its size distribution and 

abundance1,2,14. However, current global model estimates of the atmospheric loading of dust with 

geometric diameter D ≤ 10 m (PM10) vary widely from ~6 to 30 Tg4,15-17. Similarly, the size distribution 

of atmospheric dust varies substantially across models, with the fraction of dust in the clay size range (D 

≤ 2 m) varying by over a factor of three6. This uncertainty in dust size and abundance is partially driven 

by a critical limitation of global models: the need to prescribe poorly known attributes of dust particles. In 

particular, the assumed dust optical properties and size distribution at emission greatly affect the resultant 

size-resolved dust loading14,17. Each model parameterizes these properties differently, and in a manner not 

always consistent with experimental results6,12,18. This divergence in assumed dust properties contributes 

to a wide range of estimates of the size-resolved global dust loading6,17. Because fine dust cools global 

climate whereas coarse dust (D ≥ 5 μm) likely warms it2, this uncertainty in size-resolved dust loading 

contributes to a wide spread in model estimates of the dust DRE2,7,12,14,19. 

Since the use of global models alone is thus unlikely to substantially narrow the uncertainty on dust 

climate effects20, we develop an alternative approach to determine the size-resolved global dust loading, 

which we subsequently use to constrain the dust DRE. We use an analytical framework that leverages 

observational and experimental constraints on dust properties, and uses global models only where such 

constraints are not available. Specifically, we link dust loading to the dust aerosol optical depth (DAOD), 

which we constrain by combining extensive ground-based and satellite observations with global model 

simulations21 (Fig. 1a). Since the globally-averaged DAOD quantifies the total extinction of solar 

radiation by dust in the atmosphere, we can use it to determine the dust loading if we also constrain the 

size distribution of atmospheric dust, and the efficiency Qext with which dust of a given size extinguishes 

solar radiation (see Materials and Methods). 

We constrain the globally-averaged dust extinction efficiency Qext (Fig. 1b) by combining 

experimental constraints on dust optical properties and shape with a dust single-scattering database22. We 

find that the common simplification to treat dust as spherical particles1,2,14 results in an underestimation of 

Qext by ~20–60% for dust with D ≥ 1 m (Fig. 1b). This underestimation is largely caused by the greater 

surface-to-volume ratio of irregularly-shaped dust, relative to that of an equal-volume sphere23. 

We obtain the size distribution of atmospheric dust from experimental constraints on the size 

distribution of emitted dust (Fig. 1c) and global modeling constraints on the atmospheric lifetime of 

emitted dust (Fig. 1d) (see Materials and Methods). We constrain the globally-averaged emitted dust size 

distribution using five data sets from a variety of dust source regions (Fig. 1c), which we combine using a 

statistical model that accounts for systematic errors inherent in each study’s measurement methodology 

(see Supplement). We find that clay-sized aerosols account for only 4.3 (3.5–5.7)% of the emitted mass 

with D ≤ 20 m (PM20), which is substantially less than the 5–35% assumed in global models6. This 

finding is similar to a recent result6 based on brittle fragmentation theory (black line in Fig. 1c), which is 

reinforced here by the inclusion of three additional data sets. We constrain the globally-averaged size-



resolved dust lifetime (Fig. 1d) using simulation results from nine global models, which we again 

combine using a statistical model (see Supplement). We find that the lifetime of submicron dust is 11 (9 – 

15) days, and that it decreases roughly exponentially with increasing D. This occurs primarily because of 

the increase of gravitational deposition with particle diameter2,24. Despite their small emitted fraction, the 

long lifetime of clay-sized dust causes those particles to account for 15 (12–21)% of the atmospheric mass 

load, and their large surface-to-volume ratio and extinction efficiency (Fig. 1b) causes them to account for 

about half [46 (41–56)%] of the global DAOD (Fig. S1). 

 

 
 

Figure 1. New constraints on dust properties and prevalence. (a) Joint observational and modeling constraint on 

global DAOD21 (shading denotes 95% confidence interval (CI)), which is more precise than the AeroCom model 

ensemble17. (b) Joint experimental and modeling constraint on the globally-averaged dust extinction efficiency Qext, 

showing that “spherical” dust substantially underestimates Qext. For b-d, dashed lines and shading represent the 

maximum likelihood estimated (MLE) values and CI (see Materials and Methods). (c) Experimental constraint on 

the globally-averaged emitted dust size distribution (normalized to unity when summed over all sizes), obtained by 

combining five data sets in a statistical model. (d) Modeling constraint on the globally-averaged size-resolved dust 

lifetime, showing that lifetime decreases roughly exponentially with increasing dust size.  
  

 

 



  

 
Figure 2. Size-resolved global loading of desert dust aerosols. (a) The globally-averaged normalized volume 

distribution (shading represents CI) peaks at a coarser size than in current global models in the AeroCom ensemble17 

(colored lines). Constraints on the (b) size-resolved atmospheric dust mass and (c) the dust AOD  size distribution 

indicate that current global models contain too much fine dust and not enough coarse dust. In contrast to the volume 

distribution in panel (a), the mass distribution is not normalized, such that its integral over size equals the global 

dust load. 

 

We obtain the normalized globally-averaged dust size distribution (Fig. 2a) by combining these 

constraints on the emitted dust size distribution and lifetime (see Materials and Methods). We find that 

dust in current global models is too fine (Fig. 2b), which is consistent with recent observations14,24 and 

was previously suggested on theoretical grounds6. 

We combine the constraints on the atmospheric size distribution (Fig. 2a) with those on the DAOD 

(Fig. 1a) and the extinction efficiency (Fig. 1b) to obtain the global PM10 dust emission rate Femit and 

loading Latm (see Materials and Methods). We find that Femit = 1.7 (1.0 – 2.7)∙103 Tg/year and Latm = 20 

(13 – 29) Tg (Fig. 3). The global emission rate and loading of PM20 dust are 3.4 (2.2–5.0)∙103 Tg/year and 

23 (14 – 33) Tg, respectively (Fig. S1). Since results from the AeroCom ensemble indicate that the 

atmospheric loading of non-dust aerosols is around 10 Tg16, we conclude that desert dust likely dominates 

global aerosol by mass. Most of the AeroCom models, as well as the median model, simulate a dust 

emission rate and loading below our central estimates (Fig. 3)17, predominantly because of an 

underestimation of coarse dust (D > 5 m; Figs. 2b and S2). 

 



 
Figure 3. Global emission rate and atmospheric loading of desert dust aerosols. Probability densities of (a) the 

atmospheric dust loading and (b) the global dust emission rate (blue lines with shaded CI) indicate that some global 

models in the AeroCom ensemble17 underestimate dust emission and loading. 

 

Because global models need to assume specific values for dust attributes, their results can be biased if 

the assigned values are not consistent with experimental results. In particular, inconsistent values for dust 

optical properties and the emitted particle size distribution generate biases in the size-resolved 

atmospheric dust loading12,14,15, and thus in the simulated dust effects on climate2,6,14. Current models 

assume an emitted dust size distribution that is much finer than measurements indicate (Fig. S2), which 

results in a substantial bias toward fine dust in the atmosphere (Fig. 2). Since fine dust mostly scatters, 

whereas coarse dust also absorbs solar radiation, this fine-size bias likely contributes to the 

underestimation of aerosol absorption in models25. 

A second bias in models results from the assumption that dust is spherical5,15,19,20,26. This is 

problematic because simplifying the highly aspherical dust particles26 leads to a substantial 

underestimation of the extinction efficiency (Fig. 1b). For the atmospheric dust size distribution obtained 

here (Fig. 2a), the assumption of spherical dust results in an underestimation of the extinction produced 

by a unit mass of dust loading of 29 (24–34)%, which is consistent with recent results from deposited dust 

in ice cores27. This substantial bias is masked by excessive fine dust in models, which increases the 

extinction produced by a unit mass of dust (see Figs. 1d and S1). Global models furthermore slightly 

underestimate the global DAOD21 (Fig. 1a). The net result of these three biases is a slight underestimation 

of global dust loading (Fig. 3).  

A crucial advantage of our analytical framework is that it is subject to fewer of these biases, because 

it integrates observational and experimental constraints. Despite important limitations of our approach 

(see Materials and Methods), we consider our constraints on the size-resolved global dust emission rate 

and loading (Figs. 2, 3) to be more accurate and robust than constraints derived from model ensembles4,15-

17. As such, our constraints on the size-resolved dust loading can better inform dust effects on climate, and 

in particular the dust DRE1,2, which is highly sensitive to the atmospheric dust size distribution. Indeed, 

fine dust cools global climate by scattering solar radiation, whereas coarse dust (D ≥ 5 μm) likely warms 

by absorbing both solar and thermal radiation2 (Fig. S3). Consequently, our finding that atmospheric dust 

is coarser than represented in the current ensemble of global models17 implies that dust DRE is more 

positive than the -0.30 to -0.60 W/m2 estimated by AeroCom models2,11-13. 

We determine the DRE of PM20 dust by combining results on the size-resolved extinction of SW 

radiation (Fig. 2c) with an ensemble of model simulations of the efficiency with which a unit of extinction 

is converted to DRE (Fig. S3; Materials and Methods). Using the size-resolved dust loading obtained by 

AeroCom models yields a DRE at top-of-atmosphere (TOA) of -0.46 (-0.78 to -0.03) W/m2
, which is 

consistent with estimates by individual AeroCom models2,11-13 (Fig. 4). In contrast, using our constraints 



on the size-resolved dust loading yields a DRE of -0.20 (-0.48 to +0.20) W/m2 (Fig. 4). This represents a 

reduction of the most likely DRE by approximately a factor of two, and a 26% chance that the global 

DRE is actually positive.  

Three different factors contribute to our result that the dust DRE is substantially more positive 

(warming) than accounted for by current AeroCom models17. First, correcting the fine-size bias in models 

reduces SW cooling by ~0.15 W/m2, both because fine dust predominantly scatters whereas coarse dust 

also absorbs, and because the short lifetime of coarse dust causes concentrates these particles over bright 

deserts, which reduces the cooling effect of scattering and enhances the warming effect of SW absorption. 

Second, the increase in coarse dust increases the warming arising from LW interactions by ~0.10 W/m2 

(Fig. 4). Finally, very coarse dust (D > 10 m) produces a positive DRE of +0.03 (+0.01 to +0.06) W/m2, 

which is neglected by about half the AeroCom models17. 

 

 
Figure 4. Constraints on the global direct radiative effect (DRE) of PM20 dust. The fine-size bias in current 

models causes an overestimation of SW cooling and underestimation of LW warming (hatched bars). We correct 

these biases using our constraints on the global size-resolved dust load (Fig. 2b) and extinction efficiency (Fig. 1b), 

resulting in a more positive (warming) DRE at the top-of-atmosphere. Error bars denote 95% CI2,11-13. 

 

Although our results indicate that the global dust DRE is substantially more positive than represented 

in current models (Fig. 4), the effects of the fine-size bias in current models are region-specific. This 

spatial variability in the dust DRE is primarily driven by regional differences in surface albedo and 

prevalence of clouds, and by the size-dependent dust lifetimes (Fig. 1d). Close to source regions, the 

coarse particles missing from current models produce additional warming (Fig. S4), especially over 

highly reflective arid regions. Further from source regions, much of this missing coarse dust has been 

deposited (Figure 1d and Refs. 24,28). However, the excess of fine dust in current models (Fig. 2b) causes 

an overestimation of dust cooling far from source regions (Fig. S4), particularly over low reflectivity 

regions, such as oceans and forests. Our results thus imply a more positive dust DRE, both close to and 

far from source regions. 

Our results suggest that dust cools the climate system substantially less than represented in current 

models, and raise the possibility that dust is actually net warming the planet. This has important 

implications for the role of changes in dust loading in past and future climate changes. Past increases in 

dust loading have likely slowed anthropogenic greenhouse warming less than current models suggest7,8, 

and might even have accelerated it. This is consistent with recent insights that aerosol radiative forcing 

might be less cooling than previously thought20. Similarly, anthropogenic dust emissions, which are 



estimated to account for about a quarter of total dust emissions29, might enhance, rather than oppose4, 

global warming. Our results further suggest that possible future increases in dust loading might dampen 

global climate change less than current models estimate10, and might even enhance it. 

 

Materials and Methods 
Analytical framework for constraining the size-resolved atmospheric dust loading. Past constraints 

on the global dust loading and the resulting dust radiative effects have been obtained mostly from 

ensembles of global model simulations15-17. To simulate dust loading, these models must represent non-

linear small-scale processes, such as dust emission and deposition30, which are not resolved within large-

scale climate models. These small-scale processes are thus heavily parameterized31-33, introducing 

uncertainty in the simulated dust loading. In addition, model results can contain biases that arise from 

inconsistencies of assumed dust properties with respect to experimental and observational constraints6,12.  

To overcome these limitations of global model ensembles, we have developed an analytical 

framework that constrains the global dust loading and its direct radiative effect using observational and 

experimental constraints, where available, to replace modeling results. Further, our framework directly 

links the global dust loading to a strong observational constraint on the magnitude of the global dust 

cycle: satellite measurements of the aerosol optical depth, which can be partitioned between that arising 

from dust and from other aerosols15,21,34. The dust aerosol optical depth (DAOD), which quantifies the 

extinction of solar radiation by dust, is constrained globally by years of retrievals from multiple satellites 

that have been calibrated against accurate ground-based measurements35. The global atmospheric loading 

of PM10 dust (Latm) can thus be expressed as, 
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where AEarth is the area of the Earth, τd is the globally-averaged DAOD at 550 nm wavelength, and ετ 

(m2/kg) is the mass extinction efficiency. We use the results of Ridley et al.21, who combined satellite 

measurements, ground-based measurements, and global transport model simulations to constrain the 

global DAOD to d = 0.030 (0.020 – 0.040) (Fig. 1a).  

The globally-averaged mass extinction efficiency ετ equals the summed projected surface area of a 

unit mass of dust loading, multiplied by the globally-averaged efficiency with which a unit projected dust 

surface area extinguishes radiation. Because these factors depend on the dust geometric diameter D (i.e., 

the diameter of a sphere with the same volume as the irregular dust particle), the contribution of each dust 

particle size to ετ must be weighted by the globally-averaged volume size distribution of atmospheric dust, 
𝑑𝑉𝑎𝑡𝑚
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, which is normalized (i.e., integrating over D yields unity). That is, 
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where A(D)/M(D) = 3/2ρdD is a spherical particle’s projected surface area per unit mass, ρd = (2.5 ± 

0.2)∙103 kg/m3  is the density of dust aerosols (see Supplement); and Dmax = 20 μm is the diameter above 

which the contribution to the global DAOD can be neglected, as justified by our results (Fig. S1). We 

further define the globally-averaged extinction efficiency Qext(D) as the extinction cross-section 

normalized by πD2/4, the projected area of a sphere with diameter D. Since an irregular dust particle has 

more surface area than a spherical particle with the same volume, it will generally have a larger extinction 

efficiency23. 

The globally-averaged size distribution of atmospheric dust, 
𝑑𝑉𝑎𝑡𝑚

𝑑𝐷
, is determined by three factors: (i) 

the normalized volume size distribution at emission (
𝑑𝑉𝑒𝑚𝑖𝑡

𝑑𝐷
), (ii) the globally-averaged size-resolved dust 

lifetime (T(D)), and (iii) any changes in the size of dust particles during transport due to chemical 

processing and aggregation with other aerosols, which is likely insignificant for African dust36 but might 



play a role for Asian dust37. Such changes in dust size during transport are neglected in many models due 

to a lack of mechanistic understanding2,7,29,31,38. By similarly neglecting this process, we obtain 
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where the mass-weighted average dust lifetime �̅� is given by 
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where we have used the fact that both the atmospheric and emitted volume size distributions are 

normalized; note that �̅� is also equal to Latm/Femit, where Femit is the global dust emission rate. The above 

equations yield ετ = 0.75 (0.62–0.95) m2/g, which is consistent with results from the AeroCom global 

model ensemble17. We use ετ to obtain the size-resolved global dust emission rate and loading (Fig. 2 and 

3). 

We use these constraints on the size-resolved dust loading to similarly constrain the dust direct 

radiative effect, ζ. Since ζ is generated by extinction of radiation by dust, it can be expressed as the 

product of the dust optical depth and the radiative effect produced per unit of optical depth20,  
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where we used Eqs. (1) and (2) to write 
𝑑𝜏𝑑

𝑑𝐷
 in terms of the dust size distribution and extinction efficiency. 

The radiative effect efficiency Ω(𝐷) is the all-sky DRE that dust of diameter D produces per unit DAOD. 

It depends on numerous properties of the Earth system, including the spatial and temporal variability of 

dust, the surface albedo, the vertical temperature profile, the distribution of radiatively-active species such 

as clouds and greenhouse gases, and the asymmetry parameter and single-scattering albedo of dust. The 

value of Ω(𝐷) is thus not readily amenable to an analytical treatment, such that we use results from four 

global model simulations to estimate Ω(𝐷) (see Supplementary Figure S3 and Supplementary Text).  

We used a procedure similar to Eq. (5) to calculate the dust DRE that results from the atmospheric 

dust size distributions in AeroCom models (colored lines in Fig. 2b), for which we obtained the global 

extinction of atmospheric radiation as a function of dust size by combining the AeroCom dust size 

distributions (Fig. 2b) with the Mie theory extinction efficiency (brown line in Fig. 1b) assumed in 

AeroCom models5,15,19,20,26 (see Supplement for additional details). 

Our analytical framework has important limitations. First, our results rely on the constraint on global 

DAOD from Ref. 21 (Fig. 1a), which is consistent with both AeroCom model simulations17 and with the 

MERRA Aerosol Reanalysis product21. Nonetheless, the analysis in Ref. 21 is subject to various possible 

biases, including due to the cloud-screening algorithm39, due to the separation of dust optical depth from 

that of all other aerosols, due to the remotely-sensed optical depth retrieval algorithm for aspherical 

particles40, and due to differences between remotely-sensed clear-sky aerosol optical depth and all-sky 

optical depth. The uncertainty due to many, but not all, of these biases were quantified in Ref. 21, and have 

been propagated into the results presented here. Second, as is the case in many global models2,7, our 

analytical approach to constraining the size-resolved dust loading cannot explicitly account for changes in 

optical properties and size distribution during transport due to chemical processing, internal mixing with 

other aerosols, and absorption of water vapor38,41. However, our methodology does implicitly account for 

some of the effects of internal mixing because the globally-averaged dust extinction properties are based 

on both fresh and aged dust from a range of source regions (see Supplement). Third, our constraint on the 

dust extinction efficiency uses numerical modeling results in which dust is represented as an ensemble of 

tri-axial ellipsoids22. This shape is an imperfect representation of the highly heterogeneous and 

mineralogy-dependent shape and roughness of real dust, and thus might produce systematic errors23. 

Further, the shortest axis (height) of these ellipsoids is poorly constrained due to a scarcity of 

measurements26, which also prevent the propagation of uncertainty in the particle height distribution (see 

Supplement). We thus likely underestimate the uncertainty on the dust extinction efficiency. Fourth, our 



analytical framework uses globally-averaged properties of dust to calculate the global size-resolved dust 

loading and resulting dust radiative effects. The neglect of regional heterogeneity in dust properties could 

introduce errors by not accounting for covariance between dust properties. An example of this would be if 

the index of refraction or shape of dust depended substantially on particle size. However, experimental 

results suggest such covariances are small42,43. Fifth, our constraints on the global dust DRE at TOA (Fig. 

4) rely on an ensemble of four global model simulations of the size-resolved dust DRE (Fig. S3). These 

models assume specific optical properties that, although broadly consistent with remote sensing and in 

situ measurements (see Supplement), are not subject to the detailed experimental constraints that we have 

used for constraining the emitted dust size distribution and extinction efficiency. Sixth, our constraints 

likely underestimate the warming effect of LW scattering interactions, which are not accounted for in 

most global models. We therefore follow the treatment of Miller et al.2, which is the only global modeling 

study that we are aware of that has accounted for the contribution of LW scattering to the dust DRE. 

Specifically, we assume that the DRE from LW scattering equals 30% of that produced by LW 

absorption. Since the DRE from LW scattering is likely of similar magnitude to that arising from LW 

absorption interactions44, our constraint on the LW DRE should be seen as conservative. 

A final limitation of our approach is that it is currently impossible to observationally constrain the 

globally-averaged dust lifetime. Consequently, we rely on an ensemble of model results (Fig. 1d), which 

could contain systematic biases. Since there are few observational constraints to test deposition schemes 

in models32,34, the uncertainty of dust lifetime might be incompletely represented. Further, some models 

underestimate the prevalence of coarse dust far from source regions14,21,31, which could be partially 

explained by the fine-size bias in models (Fig. 2). However, this underestimation of coarse dust can also 

be due to processes missing from models, such as aggregation during transport, numerical errors in the 

size distribution treatment, the neglected effect of asphericity on dust settling, electrostatic charging, or 

errors in the (dry) deposition parameterization28,45,46. Such systematic biases towards underrepresentation 

of long-range coarse dust transport could have caused our results to underestimate the global dust 

emission loading. However, this would strengthen our conclusions that dust loading is slightly 

underestimated, that atmospheric dust is coarser than represented in current models, and that the dust 

DRE is more positive than accounted for in current models. 

Constraining the globally-averaged size-resolved shortwave extinction efficiency. The extinction 

efficiency of the global population of dust particles depends on (i) its average real refractive index, (ii) its 

average imaginary refractive index, and (iii) the distribution of dust particle shapes. Based on extensive 

measurements, we take the globally-averaged real index of refraction at 550 nm as n = 1.53 ± 0.03 (see 

Supplement). The uncertainty in the imaginary index of refraction k is substantially larger, partially due to 

regional variations in shortwave-absorbing minerals like hematite19,47,48. However, since absorption 

accounts for only a small fraction of the total extinction, its influence on our constraint on the extinction 

efficiency (Fig. 1b) is limited. We take k as a lognormal distribution with log(-k) = -2.5 ± 0.3 (see 

Supplement). Finally, measurements and theory indicate that the distribution of dust shapes in the 

atmosphere can be represented as tri-axial ellipsoids22 with a height-to-major axis ratio of εh = ~0.33326,49, 

and a deviation of the aspect ratio from 1 (spherical) described by a lognormal distribution42 with a 

median aspect ratio of 𝜀𝑎̅̅̅ = 1.7 ± 0.2 and a geometric standard deviation of 𝜎𝜀𝑎
= 0.6 ± 0.2. We converted 

these parameters to Qext(D) using a dust single-scattering database22. Specifically, we assumed that each 

of these parameters is independent, and obtained a large number (104) of parameter sets (m, n, 𝜀𝑎̅̅̅, and 

𝜎𝜀𝑎
) by randomly choosing values from the probability distribution of each parameter. We used the 

resulting sets of values for Qext(D), obtained from the single-scattering database22, to obtain the median 

and CI (dashed line and shading in Fig. 1b). We calculated the extinction efficiency of spherical dust with 

identical index of refraction using Mie theory50 (brown line in Fig. 1b). 

Constraining the globally-averaged dust size distribution at emission. We interpreted each of the five 

emitted dust size distribution data sets51-57 as a measure of the globally-averaged size distribution of 

emitted dust. We did so because (i) differences between measurements from different soils within a given 

study are very small51-53,57, implying that differences in the emitted dust size distribution between different 



soils are relatively small6, and (ii) the wind speed at emission has no statistically significant influence on 

the size distribution of emitted PM10 dust58. These observations from dust flux measurements are 

supported by the invariance of in situ dust size distributions to source region59 and wind speed60. We fit 

each of the five data sets51-57 with an analytical form derived from brittle fragmentation theory6. We then 

combined these five analytical functions representing each data set in a statistical model that accounts for 

systematic errors inherent in each study’s measurement methodology. This allowed us to better constrain 

the emitted dust size distribution than otherwise possible. We obtained the most likely globally-averaged 

emitted dust size distribution using a maximum likelihood estimate (MLE; dashed line in Fig. 1c), and 

obtained the uncertainty (shaded area in Fig. 1c) using a modified bootstrap procedure. See Supplement 

for additional details. 

Constraining the globally-averaged dust lifetime. We constrained the globally-averaged and size-

resolved dust lifetime using an ensemble of global model results from previous studies47,61-64, 

supplemented with simulations from the global transport models WRF-Chem, GEOS-Chem, and 

HadGEM (see Supplement). We fit an exponential function to each of the nine simulation results, which 

we combined in a statistical model to obtain the MLE of the globally-averaged size-resolved dust lifetime. 

We obtained the uncertainty (shaded area in Fig. 1d) using a modified bootstrapping procedure. See 

Supplement for additional details. 

Analysis of AeroCom model simulations. We used results from the Aerosol Comparison between 

Observations and Models (AeroCom) project16,17 as representative of the current generation of global 

models. We included the probability distributions of simulation results from these models in Figs. 1a and 

3, which were obtained using kernel density estimation with a Gaussian kernel with standard smoothing 

parameter following equation (3.31) in Ref. 65. Results from the ‘median’ AeroCom model were obtained 

by Ref.17 by taking the median of each dust cycle variable for each grid box and month. AeroCom results 

in Fig. 3 from models that simulated a dust size range larger than PM10 were corrected based on our 

constraints on the dust size distribution at emission (Fig. 1c) and in the atmosphere (Fig. 2a), respectively. 

Results from the subset of seven AeroCom models that reported the simulated dust size distributions (see 

Supplement) are included in Fig. 2. Some of these AeroCom models simulated a dust diameter range 

smaller than 20 m, for which we similarly used our constraints to correct the normalized size 

distributions of atmospheric (Fig. 2a) and emitted (Fig. S2) dust to the PM20 range.  
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Supplementary Figures 
 

 

 
Supplementary Figure S1. Contributions of individual particle size ranges to the global dust budget. Size-

resolved contributions to (a) the global dust emission rate, (b) global dust mass loading, and (c) global DAOD. 

Results are obtained by integrating the constraints on size-resolved dust emission, loading, and DAOD (see Fig. 2 

and Section 3) between the bin size limits. Clay-sized aerosols (D ≤ 2 m) make up a small fraction of the emitted 

dust, but an increasingly large fraction of the mass load and global DAOD. Conversely, very coarse dust (D ≥ 5 m) 

accounts for the majority of the emitted dust, but much smaller fractions of the mass load and global DAOD. Error 

bars denote each particle bin’s CI. 



 
Supplementary Figure S2. Normalized size distribution of emitted dust. The normalized size distribution of dust 

at emission, as constrained here based on measurements (dashed line with shading for CI; from Fig. 1c), and as 

assumed in seven AeroCom models (colored lines). Models overestimate the contribution of clay-sized aerosols and 

underestimate the contribution of very coarse (D ≥ 5 m) aerosols. Both the experimentally-constrained and 

modeled size distributions were normalized to unity over the PM20 size range (see Materials and Methods). 

 

 
Supplementary Figure S3. The size-resolved direct radiative effect efficiency. Results for the direct radiative 

effect efficiency, which is the DRE produced per unit global DAOD, are shown for individual particle bins 

simulated by four different global models in both the SW (a) and LW (b) spectra. The LW radiative effect efficiency 

includes the effects of LW absorption only; the effect of LW scattering is not included in most global models1, 2. The 

horizontal black lines denote the particle bin’s size limits. 

 

 

 



Supplementary Figure S4. The size-resolved direct radiative effect (DRE) at top-of-atmosphere (TOA). Panels 

(a-h) show the DRE calculated for each particle bin of the four global models CESM, GISS, GEOS-Chem and 

WRF-Chem. All results were obtained by multiplying the DAOD for each particle bin [Δτd; Eq. (S.29)] by the 

corresponding model’s radiative effect efficiency [Ω(D); Fig. S3]; see Section 4 for details. Results in panels (a-d) 

used the size-resolved DAOD obtained by combining the size-resolved dust loading from the seven AeroCom 

models with Mie theory for each particle bin (see Section 4.1), whereas panels (e-h) used the constraints on the size-

resolved DAOD from this study (see Section 4.2). Panels (i-l) show the difference between the two treatments. 

Results are shown for DRE due to dust interactions with SW (purple bars), LW (green bars), and all radiation 

(brown bars). To prevent cluttering the graphs, only the uncertainty in the DRE due to interactions with all radiation 

is shown. For all four models, correcting the fine size bias of the AeroCom models decreases the cooling by 

submicron dust (D < ~1 m), and increases the warming by coarse dust (D > ~5 m).   



 

 

Supplementary Figure S5. Probability distributions of the dust direct radiative effect (DRE). The probability 

distribution of the DRE in the SW (a) and LW (b) spectra are shown for each of the three global models, as well as 

the resulting probability distribution of the total DRE (c). These probability distributions are obtained by combining 

constraints on the size-resolved global dust optical depth (Fig. 2c) with global model calculations of the DRE per 

unit optical depth in the SW and LW spectra (Fig. S3).  



Supplementary Methods 
This section first provides a detailed description of our methodology for obtaining the globally-

averaged atmospheric dust size distribution (Section 1), the extinction efficiency (Section 2), the size-

resolved global dust emission rate, loading, and optical depth (Section 3), and the dust direct radiative 

effect (Section 4). We then provide a description of the atmospheric model simulations used in this study 

(Section 5). 

1. Analysis of the globally-averaged atmospheric dust size distribution 

Using Equation (3) in the main text, we obtain the globally-averaged particle size distribution (PSD) 

of atmospheric dust from constraints on the emitted dust PSD (Section 1.1) and the size-resolved dust 

lifetime (Section 1.2). The resulting globally-averaged atmospheric dust PSD (see Section 1.3) is 

compared against that obtained by a number of global model simulations (see Section 1.4). 

1.1 Globally-averaged dust PSD at emission 
The size distribution of dust at emission has been measured by a total of seven studies3-9. These 

studies measured the emitted dust number size distribution, using optical microscopy of collected dust 

samples3-5, or optical particle counters used on the ground6-8 or on an airplane flying in the boundary 

layer9. Below, we describe the procedure for analyzing these measurements, and also provide a 

description of each study and the methods employed by it. We then describe the procedure for 

constraining the globally-averaged emitted dust size distribution in Section 1.1.2. 

1.1.1 Analysis of the emitted dust PSD data sets 
In order to use the seven studies of the emitted dust PSD to constrain the globally-averaged emitted 

dust PSD, we first need to bring the different data sets on an equal footing. The procedure for this largely 

follows that described in Ref. 10, with exceptions for each data set described below. Specifically, because 

emitted dust size distribution measurements are generally well-described by the power law 
2

emit ln/  DDddN  in the range of 2 – 10 μm (see Fig. 2 in Ref. 10), we fit each set of measurements in 

that size range for a given wind speed and soil (or location) to this power law. We then normalized 

measurements at all aerosol sizes for a given soil and wind speed by the proportionality constant in the 

fitted power law to account for the strong dependence of the dust flux on wind speed and soil type11-13. 

For a given study, this procedure put measurements at different wind speeds and for different soils on an 

equal footing, except for the dependence of the shape of the dust PSD on wind speed and soil properties, 

which measurements suggest is small14.  

For each data set, we reduced random errors by averaging over all normalized measurements for a 

given particle bin for different wind speeds, soils (in the case of Ref. 5), and terrain types (in the case of 

Ref. 9). This procedure also yielded the standard error of measurements for a given particle bin, which 

thus does not include any systematic errors inherent in the measurement technique. Since Ref. 3 obtained 

only one reliable measurement per particle size, the standard error on these single measurements was 

estimated from the similar measurements of Ref. 4 and 5. The result of the above procedure is plotted in 

Figure 1c.  

We note that the random error obtained through the above procedure is small compared to the spread 

between measurements from different studies (see, e.g., fig. 5 in Ref. 9 and fig. 3 in Ref. 15). We thus infer 

that random errors within a data set, which capture measurement uncertainty and the effects of differences 

in wind speed and soil/terrain type (for Refs. 5 and 9), are small compared to the systematic errors between 

data sets. This inference is supported by the fact that measurements from different soils within a given 

study are very small [see Fig. 2 in Ref. 10 and Fig. 5 in Ref. 9], and that changes in wind speed have been 

shown to have no statistically significant influence on the size distribution of emitted PM10 dust14. This 

important observation implies that differences in measurements of the emitted dust size distribution are 

largely due to differences in the measurement technique rather than to differences in the actual size 

distribution of emitted dust aerosols. Further, since the difference in the emitted dust PSD for different 

soils, terrain types, and wind speeds is small compared to the systematic error between data sets, we can 



consider each data set as an approximate measure of the globally-averaged emitted dust size distribution 

(also see discussions in Refs. 10, 14, and 16). This is consistent with the finding that in situ dust size 

distributions appear independent of source region16, 17. 

1.1.1.1 Gillette data set 
The first field measurements of the size-resolved vertical dust flux were made by Gillette and co-

workers3-5. They reported measurements of one sandy loam, two fine sand, and two loamy fine sand soils 

in Texas and Nebraska for a range of wind (friction) speeds. These measurements were made using two 

single-stage jet impactors at heights of 1.5 and 6 m. The collected aerosols were subsequently analyzed 

using optical microscopy to retrieve the size-resolved vertical flux of dust aerosols larger than ~1 μm 

geometric diameter. Because systematic errors due to differences in measurement technique between data 

sets are much greater than the random errors due to differences in soil and wind speed within a given data 

set, we combine the results from the three Gillette studies3-5 into a single data set. 

1.1.1.2 Fratini et al. (2009) data set 
Fratini et al.6 used eddy covariance to measure the size-resolved flux of dust emitted over a sandy soil 

in the Gobi desert in Inner Mongolia, China. The dust particle concentration was measured using an 

optical particle counter (OPC), which measured particles with aerodynamic diameters between 0.35 and 

9.5 μm. These measurements thus need to be corrected to the geometric size range. The geometric and 

aerodynamic diameters are related by18, 19 

ae

p

0

d DD
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(S.1)  

where ρp ≈ 2.5 ± 0.2 × 103 kg/m3 is the density of dust aerosols (see main text), and χ is the dynamic 

shape factor, which is defined as the ratio of the drag force experienced by the irregular particle to the 

drag force experienced by a spherical particle with diameter Dd 
18. Measurements of the dynamic shape 

factor for mineral dust particles with a geometric diameter of ~10 m find χ ≈ 1.4 ± 0.1 20-22. Inserting 

this into equation (S.1) then yields that Dd ≈ (0.75 ± 0.04) Dae, where the standard error was obtained 

using error propagation23. Note that the Fratini et al. results from the coarser particle bins (> ~ 5 μm) are 

unreliable because the efficiency of the air inlet system was not tested and could have produced an under-

sampling of larger particles (Fratini, 2012, personal communication). Consequently, we did not use these 

measurements, and normalized the Fratini et al. data over the range of 2–4 μm (instead of 2–10 μm). 

Furthermore, because the scatter in the measurements of Fratini et al.6 is substantially greater than that in 

the other data sets, we averaged adjacent pairs of particle bins to reduce this scatter. 

1.1.1.3 Sow et al. (2009) data set 
Sow et al.7 used two optical particle counters at heights of 2.1 and 6.5 m to measure the size-resolved 

vertical flux of dust aerosols larger than 0.3 μm. They simultaneously measured the wind speed at several 

heights, which they used to obtain the dust flux through the gradient method of Gillette et al.3
. Sow et al.7 

reported measurements made during three dust storms in Niger for which the average wind friction speed 

varied between 0.4 and 0.6 m/; they did not report the soil type. 

1.1.1.4 Shao et al. (2011) data set 
Shao, Ishizuka, and co-authors8, 24 reported measurements of the vertical dust flux generated by a 

strong erosion event during the Japanese Australian Dust Experiment (JADE). The JADE field campaign 

took place in 2006 on a flat, fallow agricultural field with a loamy sand soil in southeastern Australia24, 25. 

The investigators used optical particle counters at 1.0, 2.0, and 3.5 m heights to measure the particle 

concentration in the 0.3–8.4 μm geometric diameter size range (Ishizuka, 2012, personal communication). 

Simultaneous wind speed measurements were made with anemometers at 0.50 and 2.16 m height. These 

measurements were combined to calculate the vertical dust flux as a function of friction velocity using the 

gradient method3, with an added correction for the gravitational settling of dust particles. The measured 



wind friction speed was in the range of <0.20 m/s to 0.55m/s. The authors questioned the reliability of the 

0.3 – 0.6 m size bin (p. 13 of Ref. 8), which is thus not used here. 

1.1.1.5 Rosenberg et al. (2014) data set 
In contrast to the previous data sets, which were all obtained on the ground during active dust 

emission, the measurements of Rosenberg et al.9 were made from an airplane flying over dusty regions in 

the central Sahara. The authors obtained measurements of the size-resolved aerosol fluxes up to 300 m 

diameter for four different regions and at three different ranges of the vertical turbulent kinetic energy. 

Rosenberg et al. obtained these size-resolved aerosol fluxes using eddy covariance, which was facilitated 

by high frequency measurements of the size-resolved aerosol concentration (using several different 

OPCs) and the 3D wind (using pitot probes). These flux measurements were made in the lower portion of 

the atmospheric boundary layer, at altitudes ranging between ~100 – 1000 m. We only use the size-

resolved aerosol flux measurements with particle sizes ≥ 0.5 μm because (i) measurements of the 

SAMUM campaign over the Sahara desert26-28 showed that aerosols with diameter ≤ 0.5 μm are largely 

not dust aerosols29, and (ii) the fraction of aerosols ≤ 0.5 μm that is dust is often coated in volatiles26, 

which was not accounted for in Rosenberg et al.9. Conversely, we assume that the aerosol fluxes > 0.5 μm 

are entirely due to dust26-28. 

1.1.2 Obtaining the globally-averaged emitted dust PSD 
After the previous section described the analysis of the emitted dust PSD data sets, we now describe 

the procedure that uses these data sets to determine the most likely globally-averaged emitted dust PSD 

and its 95% confidence interval. We obtain the most likely globally-averaged emitted dust size 

distribution using a statistical model that accounts for systematic errors inherent in each study’s 

measurement methodology, which allows us to better constrain the emitted dust size distribution than 

otherwise possible. Specifically, we (i) fit each emitted dust PSD data set to an analytical function, (ii) use 

these analytical functions in a maximum likelihood procedure that explicitly consider the systematic 

errors between data sets, and (iii) use a bootstrap procedure 30, 31 to obtain the 95% confidence interval.  

1.1.2.1 Fitting the emitted dust PSD 
We thus first fit each data set to the analytical expression of the emitted dust PSD obtained from 

brittle fragmentation theory10, which is in good agreement with each data set9, 15. This expression is given 

by 
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where Vemit is the normalized volume concentration of emitted dust aerosols with geometric size D, Vc is 

a normalization constant, and Ωs, DM, and λ are model parameters whose significance are discusses in 

Ref. 10. We used a non-linear least-squares analysis23 to fit equation (S.2) to each data set, which yielded 

the least-squares estimates of the model parameters (Ωs, DM, and λ), their errors, and their covariances. 

Because systematic errors between data sets are much larger than the random errors within each data set 

(see discussion above), we assumed that the relative error, which is due to both random and systematic 

errors, is equal for all data points within a data set.  

1.1.2.2 Using the maximum likelihood method to estimate the most likely globally-averaged 

emitted dust PSD 
The above procedure thus yields five values of Ωs, DM, and λ, with their errors and covariances. We 

use these five estimates in a likelihood procedure to obtain the maximum likelihood estimates (MLEs) of 

the globally-representative values, �̃�Ωs
, �̃�𝐷M

, and �̃�𝜆, that describe the globally-averaged emitted dust 

PSD per equation (S.2). This procedure explicitly accounts for the systematic error affecting the five 

fitted values of Ωs, DM, and λ. That is, as we describe in more detail below, we assume that each data set’s 

values of Ωs, DM, and λ are drawn from normal distributions for which the standard deviation represents 



the average systematic errors 𝜏Ωs
, 𝜏DM

, and 𝜏𝜆 between data sets. We then use maximum likelihood 

procedures to find both the globally-representative parameter values (�̃�Ωs
,�̃�𝐷M

, and �̃�𝜆) and the 

characteristic systematic error between data sets (𝜏Ωs
, 𝜏DM

, and 𝜏𝜆), thereby propagating these errors into 

the uncertainty on the emitted dust size distribution (shaded region in Fig. 1c). 

 

Procedure for obtaining �̃�𝛀𝐬
 and �̃�𝐃𝐌

. Since Ωs and DM occur jointly inside the error function in 

equation (S.2), their values are correlated. Making the standard assumption of normally-distributed errors, 

we describe the likelihood of obtaining the fitted parameters Ωs,i and DM,i with a bivariate normal 

distribution that is centered around the ‘true’ values 𝜇Ωs,𝑖 and 𝜇DM,𝑖 for the particular data set i. That is, 

as the standard errors 𝜎Ωs,𝑖 and 𝜎DM,𝑖 approach zero and equation (S.2) becomes a perfect to the measured 

data, Ωs,i  and DM,i respectively approach 𝜇Ωs,𝑖 and 𝜇DM,𝑖.  

The joint probability of Ωs,i and DM,i is thus given by 

(
Ωs,𝑖

𝐷M,𝑖
) ~ 𝑁2 [(

𝜇Ωs,𝑖

𝜇DM,𝑖
) , Σ𝑖], where 

 

(S.3) 

Σ𝑖 =  (
𝜎Ωs,𝑖

2 𝜌𝑖𝜎Ωs,𝑖𝜎DM,𝑖

𝜌𝑖𝜎Ωs,𝑖𝜎DM,𝑖 𝜎DM,𝑖
2 )  

 

(S.4) 

where N2 denotes a bivariate normal distribution, for which the first term in parentheses denotes the 

distribution’s median, and the second term (Σi) the covariance matrix. Furthermore, i is the correlation 

between Ωs,i and DM,i for the particular data set i; i, 𝜎Ωs,𝑖, and 𝜎DM,𝑖 are obtained from the least-squares 

fitting procedure of equation (S.2) to data set i. 

Even if all random error is eliminated from the measurements, systematic errors would cause the 

values of 𝜇Ωs,𝑖 and 𝜇DM,𝑖 obtained for each of the five data sets to be offset from the ‘true’ �̃�Ωs
 and 

�̃�DM
 that actually occur in the real world. Since differences in soil properties and wind speed seem to have 

only limited impact on the emitted dust PSD (see discussion above), we infer that these systematic errors 

are largely due to differences in experimental techniques19. We assume that the systematic errors for the 

five data sets are drawn from a bivariate normal distribution centered around zero, with unknown 

variances 𝜏Ωs

2  and 𝜏DM

2 , respectively, for Ωs and DM. That is, 

(
𝜇Ωs,𝑖

𝜇DM,𝑖
) ~ 𝑁2 [(

�̃�Ωs

�̃�DM

) , Γ], where 
 

(S.5) 

Γ =  (
𝜏Ωs

2 𝜂𝜏Ωs
𝜏DM

𝜂𝜏Ωs
𝜏DM

𝜏DM

2 ) , 
 

(S.6) 

where η is the correlation between �̃�Ωs
and �̃�DM

, which we estimate as the correlation between the 5 

values of Ωs,i and DM,i, yielding η = 0.68. Combining equations (S.5) and (S.6) then yields 

(
Ω𝑠,𝑖

𝐷𝑀,𝑖
) ~ 𝑁2 [(

�̃�Ωs

�̃�DM

) , Σ𝑖 + Γ] =

𝑁2 [(
�̃�Ωs

�̃�DM

) , (
𝜎Ωs,𝑖

2 + 𝜏Ωs

2 𝜌𝑖𝜎Ωs,𝑖𝜎DM,𝑖 + 𝜂𝜏Ωs
𝜏DM

𝜌𝑖𝜎Ωs,𝑖𝜎DM,𝑖 + 𝜂𝜏Ωs
𝜏DM

𝜎DM,𝑖
2 +𝜏DM

2 )]. 

 

(S.7) 

The likelihood of obtaining any particular set of Ωs,i and DM,i values from the n = 5 data sets is then23 
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(S.10) 

By maximizing the likelihood function L with the calculated values of Ωs,i and DM,i, we estimated the 

unknown parameters �̃�Ωs
= 2.10, �̃�DM

= 1.52 μm, 𝜏Ωs
= 0.25, and 𝜏DM

 = 0.54 μm. 

 

Procedure for obtaining �̃�𝝀. We now describe the procedure for obtaining the MLE of �̃�𝜆, which is 

similar to that for �̃�Ωs
 and �̃�DM

 described above. �̃�𝜆 is the most likely globally-representative value of the 

parameter λ, which affects the shape of the size distribution curve for particle diameters  > ~10 μm. Since 

Ωs and DM predominantly describe the size distribution for smaller particle sizes, λ is only weakly 

correlated to Ωs and DM. For simplicity, we thus consider the fitted parameter λi to be an independent 

parameter that is normally distributed (denoted by N) around the ‘true’ value 𝜇𝜆𝑖
that exists for each 

particular data set i. The likelihood of obtaining the fitted parameter λi is then  

𝜆𝑖~𝑁(𝜇𝜆𝑖
, 𝜎𝜆𝑖

2 ), (S.11) 

where the standard error 𝜎𝜆𝑖
is obtained from the least-squares fitting procedure of equation (S.2) to the 

data set i. As with 𝜇Ωs,𝑖 and 𝜇DM,𝑖, the value of 𝜇𝜆𝑖
 is affected by systematic errors that offset it from the 

‘true’ �̃�𝜆 that actually occurs in the real world. We again assume that this systematic error is given by a 

normal distribution with zero mean and variance 𝜏𝜆
2. That is, 

𝜇𝜆𝑖
~𝑁(�̃�𝜆, 𝜏𝜆

2). (S.12) 
Combining equations (S.11) and (S.12) then yields the likelihood of obtaining the particular set of λi 

values from the n = 5 data sets: 
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(S.13) 

By again maximizing the likelihood function L, we estimated the unknown parameters �̃�𝜆 = 20.5 μm and 

 = 7.9 μm. 

After calculating �̃�Ωs
, �̃�DM

, and �̃�𝜆 through the above procedures, we used these values to calculate 

the normalization factor cV by forcing the integral over equation (S.2), from D = 0.2 to 20 m, to unity. 

The resulting most likely globally-averaged emitted dust size distribution is plotted in Figure 1c. 

1.1.2.3 Obtaining the error in the globally-averaged emitted dust size distribution 
In addition to obtaining the most likely globally-averaged emitted dust size distribution, we also 

require its 95% confidence interval. We obtained this using a modified bootstrap procedure30, 31: 

1. We randomly choose one data set from the total of five emitted dust PSD data sets, and repeat 

this five times with resampling. This results in a set of five randomly-selected data sets, in which 

each data set can be represented more than once, or not at all. Note that, since the bootstrapping 

method requires identical and independently distributed measurements30, 31, we thus necessarily 

assume that all data sets are independent. This is another reason for combining the three Gillette 

studies into a single data set. 

2. We obtain the values of �̃�Ωs
, �̃�DM

, and �̃�𝜆 from the procedure described in Section 1.1.2.2. 

3. We repeat steps 1 and 2 a large number of times, yielding a large number of possible curves for 

the globally-averaged emitted dust PSD. 

4. For each value of the particle diameter D, the 95% confidence interval is the interval within 

which 95% of the curves obtained in step 3 lie30, 31. This confidence interval is plotted as gray 

shading on Figure 1c. 

1.2 Analysis of the globally-averaged and size-resolved dust lifetime 



We constrain the globally averaged size-resolved dust lifetime from the lifetime simulated with nine 

different climate and chemical transport models. These include GISS (see figure S12 in Ref. 32), GMOD 

(see table 2 in Ref. 33), CESM (calculated from simulations reported in Ref. 34), MOZART (see Table 2 in 

Ref. 35), UMI (see table 3 in 36; our Fig.2 shows the geometric mean of the three reported simulations with 

different meteorological data sets), MERRAero (calculated from simulations accessible at 

http://opendap.nccs.nasa.gov/dods/GEOS-5/MERRAero37, 38-40), WRF-Chem (see Section 5.1), GEOS-

Chem (Section 5.2), and HadGEM (Section 5.3). We use the results of these nine global transport models 

to constrain the size-resolved dust lifetime in a manner similar to that described above for the emitted dust 

PSD. That is, first we fit each model result with an analytical function (Section 1.2.1), after which we 

obtain the most likely globally-averaged size-resolved dust lifetime using the maximum likelihood 

method (Section 1.2.2), and finally we obtain the 95% confidence interval using the bootstrap method 

(Section 1.2.3). 

1.2.1 Fitting the size-resolved dust lifetime 
The nine simulation results indicate that the dust lifetime decreases approximately exponentially with 

particle size (see Fig. 1d): 
   

dep0 /exp DDTDT 
, (S.14) 

where T0 is the lifetime of dust with vanishingly small diameter, which is of the order of 10 days (Fig. 

1d), and the constant Ddep scales the exponential decay of the dust lifetime with particle size. Equation 

(S.14) can be written as  

  bDaT ln , (S.15) 

where a = ln(T0) and b = -1/Ddep. For a given model i, we used a linear least-squares procedure to fit 

equation (S.15) to the model results. This yielded the intercept ai and slope bi, the correlation i between 

intercept and slope, and the errors in the intercept (σa,i) and slope (σb,i) relative to the ‘true’ values of the 

intercept (μa,i) and slope (μb,i) for the particular climate model i. These errors are caused by internal model 

error, the finite extent of particle bins, the fact that equation (S.14) is a theoretical and not exact 

description of the lifetime dependence on particle size, and other sources of error.  

1.2.2 Using the maximum likelihood method to obtain the most likely globally-

averaged dust lifetime 
We used these nine estimates of ai and bi in a maximum likelihood procedure to obtain the most likely 

globally-representative values of �̃�𝑇0
 and �̃�𝐷𝑑𝑒𝑝

, which describe the globally-averaged dust lifetime per 

equation (S.15). Because the slope and intercept of a least-squares fit are correlated23, we again describe 

the joint probability of obtaining the intercept ai and slope bi in equation (S.15) using a bivariate normal 

distribution, which is centered around the ‘true’ values μa,i and μb,i: 

(
𝑎𝑖

𝑏𝑖
) ~ 𝑁2 [(

𝜇a,𝑖

𝜇b,𝑖
) , Σ𝑖], where  

(S.16) 

Σ𝑖 =  (
𝜎𝑎,𝑖

2 𝜌𝑖𝜎a,𝑖𝜎b,𝑖

𝜌𝑖𝜎a,𝑖𝜎b,𝑖 𝜎b,𝑖
2 ) . 

 

(S.17) 

The values of μa,i and μb,i for each climate model are affected by systematic biases, for instance due to 

errors in the deposition scheme41, that offset them from the ‘true’ (unbiased) intercept �̃�𝑎 and slope �̃�𝑏 

that actually occur in the real world. Similar to our procedure for constraining the emitted dust PSD 

(Section 1.1.2), we assume that these systematic errors are drawn from a bivariate normal distribution 

centered around zero, and with unknown variances 𝜏𝑎
2 and 𝜏𝑏

2, respectively, for a and b. That is, 

(
𝜇a,𝑖

𝜇b,𝑖
) ~ 𝑁2 [(

�̃�a

�̃�b
) , Γ], where 

 

(S.18) 

Γ =  (
𝜏𝑎

2 𝜂𝜏𝑎𝜏𝑏

𝜂𝜏𝑎𝜏𝑏 𝜏𝑏
2 )  

 

(S.19) 



where η = -0.75 is the correlation between μa,i and μb,i. Combining equations (S.18) and (S.19) then yields 

the joint probability distribution of ai and bi in terms of their ‘true’ globally-representative values (�̃�𝑎 and 

�̃�𝑏), their mean variance (𝜏𝑎
2 and 𝜏𝑏

2), and the standard errors (𝜎a,𝑖
2  and 𝜎b,𝑖

2 ) and covariances (ρi) obtained 

from the least-squares fitting procedure of equation (S.15) to data set i: 

(
𝑎𝑖

𝑏𝑖
) ~ 𝑁2 [(

�̃�a

�̃�b
) , Σ𝑖 + Γ] = 𝑁2 [(

�̃�a

�̃�b
) , (

𝜎a,𝑖
2 + 𝜏a

2 𝜌𝑖𝜎a,𝑖𝜎b,𝑖 + 𝜂𝜏𝑎𝜏𝑏

𝜌𝑖𝜎a,𝑖𝜎b,𝑖 + 𝜂𝜏𝑎𝜏𝑏 𝜎a,𝑖
2 +𝜏b

2 )]. 
 

(S.20) 

The likelihood of obtaining the particular set of intercepts and slopes from the n = 9 climate model 

results is then 
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(S.23) 

We obtained the parameters �̃�𝑎  = 2.5, �̃�𝑏 = -0.22, τa = 0.41, and τb = 0.03 by maximizing the 

likelihood function L42, which yield �̃�𝑇0
= 12.5 days, �̃�𝐷𝑑𝑒𝑝

 = 4.6 days, 𝜏𝑇0
= 5.1 days, and 𝜏𝐷𝑑𝑒𝑝

= 0.7 

days. The resulting most likely globally-averaged dust lifetime is plotted on Figure 1d. 

1.2.3 Obtaining the error in the globally-averaged dust lifetime 
In addition to obtaining the most likely size-resolved dust lifetime, we also require its uncertainty. We 

obtained this using a modified bootstrap procedure30, 31 similar to what we used for the emitted dust PSD 

(Section 1.1.2.3): 

1. We randomly chose one data set from the total of nine dust lifetime data sets, and repeat this nine 

times with resampling. This resulted in a set of nine randomly-selected data sets, in which each 

data set can be represented more than once, or not at all.  

2. We obtained the values of �̃�𝑎 and �̃�𝑏 from the procedure described above. 

3. We repeated steps 1 and 2 a large number (i.e., 105) of times, yielding a large number of possible 

curves for the globally-averaged dust lifetime. 

4. For each value of the particle diameter D, the 95% confidence interval is the interval within 

which 95% of the curves obtained in step 2 lie30, 31. This confidence interval is plotted as gray 

shading on Figure 1d. 

1.3 Obtaining the globally-averaged dust size distribution and its uncertainty 
With both the MLEs of the globally-averaged emitted dust PSD (Section 1.1) and dust lifetime 

(Section 1.2) known, we inserted these results into equation (3) to obtain the most likely globally-

averaged normalized atmospheric dust PSD (dashed line in Fig. 2a). Furthermore, the bootstrap 

procedures in Sections 1.1 and 1.2 yield a large number of possible curves for the emitted dust PSD and 

the size-resolved dust lifetime. Using equation (3), we use these to similarly generate a large number (i.e., 

105) of curves for the size-resolved globally-averaged dust size distribution. The plotted 95% confidence 

interval (gray shading) is the interval within which 95% of the ensemble values lie30, 31. We find that the 

volume size distribution of atmospheric dust peaks around 5 m (Fig. 2a), which is slightly coarser than a 

compilation of ground-based measurements16. 

1.4 Analysis of atmospheric size distribution in models 



Figure 2 shows the most likely atmospheric dust size distribution and its uncertainty. For comparison, 

we also show the atmospheric dust size distribution reported by seven climate and chemical transport 

models that participated in the Aerosol Comparison between Observations and Models (AeroCom) 

project43. Specifically, the models included in Fig. 2 are: CAM (see Table 2 in Ref. 44), the GISS ModelE 

(Figure 2 in Ref. 2), GOCART (see table 3 in Ref. 45), MATCH (see table 8 in Ref. 46), MOZART (see 

Table 2 in Ref. 35), UMI (see table 3 in Ref. 36; our Fig.2 shows the geometric mean of the three reported 

simulations with different meteorological data sets), and LOA (see tables 2 and 3 in Ref. 47). We were 

unable to locate literature reporting atmospheric dust size distribution for other AeroCom models 

(SPRINTARS48-50; ECMFW51, UIO_CTM52, 53; LSCE54; ECHAM5-HAM55; MIRAGE56; TM557, 58). 

2. Analysis of the shortwave extinction efficiency 

We seek to obtain the dust optical depth per unit dust loading that is produced by the globally-

averaged atmospheric size distribution (Section 1). To do so, we require Qext(D), the globally-averaged 

extinction efficiency of dust as a function of its particle size, at the wavelength of 550 nm for which the 

global DAOD is constrained59. The extinction efficiency depends on the size, shape, and refractive index 

of dust aerosols. We thus used measurements to constrain the globally-averaged dust index of refraction 

(Section 2.1) and dust particle shape (Section 2.2), which we then converted to Qext(D) using the single-

scattering database of Meng et al.60 (Section 2.3). 

2.1 Globally-averaged dust index of refraction 
Measurements of the real refractive index of dust at 550 nm from a variety of source regions and at a 

range of transport stages (i.e., fresh versus aged dust) are in the approximate range of m = 1.45 – 1.60 17, 

27, 28, 61-69, such that we take the globally-averaged real index of refraction as n = 1.53 ± 0.03. This value is 

thus intended to account for changes in n during transport due to chemical processing, which might be 

important for Asian dust68, but is likely less important for African dust61, 70. Note that, by characterizing 

the global ensemble of dust aerosols with a single average value for the index of refraction, rather than 

with a distribution as we do with the shape (see below), we are neglecting any non-linearities in the 

extinction efficiency with refractive index. Because the dependence of extinction on the real refractive 

index in the relatively narrow range of 1.45-1.60 is largely linear60, the error from this simplification is 

small compared to other errors in our analysis. Indeed, a sensitivity study indicates that the error 

associated with this simplification is less than a percent.  

Whereas the real refractive index of dust is thus relatively well-known, the imaginary refractive index 

reported by many in situ studies61, 71-73 is substantially larger than that derived from (ground-based or 

satellite) remote sensing observations62, 63, 74. In order to encompass both, we take 10log(-k) = -2.5 ± 0.3. 

However, since even large variability in the imaginary refractive index has a limited effect on the dust 

extinction efficiency75, 76, this large uncertainty in the dust absorption properties does not contribute 

substantially to the uncertainty in the global dust loading. 

2.2 Globally-averaged distribution of dust particle shapes 
Since the uncertainty in dust optical properties produces only limited uncertainty in the extinction 

efficiency, the main uncertainty in Qext(D) arises from the irregular shape of dust particles. A range of 

experimental studies have used electron microscopy to quantify the irregularity of dust particles. Most of 

these studies focused on measuring the aspect ratio of the particle, that is, the ratio of the particle’s major 

axis to its minor axis; the latter of these is usually obtained by fitting an ellipse to the particle and 

deriving the perpendicular dimension by requiring that the ellipsoid area equals that of the projected 

particle72, 77. These measurements indicate that the probability distribution function of the deviation of the 

aspect ratio from 1 (i.e., a perfect sphere) is well-described as a lognormal function72. Measurements 

show that the median aspect ratio is in the range of 1.5 to 1.9, and the geometric standard deviation is 

approximately 0.6; both parameters are insensitive to particle size, although there’s an increasing trend in 

aspect ratio with transport distance due to the preferential settling of spherical dust27, 72, 77-83. There are far 

fewer measurements of the particle’s third dimension, its height; the only extensive quantitative 



measurements were reported by Okada et al.78. They performed electron microscopy on dust sampled in 

China, and found that the ratio of particle height to minor axis is lognormally distributed, with a median 

of about 1/3. They also found only small variations in the average height-to-width ratio with particle size 

(see their Fig. 1b), and no clear relationship between aspect ratio and height-to-width ratio. Chou et al.79 

also reported a height to major axis ratio of about one third, and Veghte and Freedman84 reported values 

ranging between 0.1 to 0.8 for different minerals. 

Based on the measurements reviewed above, we describe the dust particle shape as a tri-axial 

ellipsoid60, with the deviation of the aspect ratio (AR) from 1 (spherical) described by a lognormal 

function72 with a median aspect ratio of  𝜀𝑎̅̅̅  = 1.7 ± 0.2 and a geometric standard deviation of 𝜎𝜀𝑎
 = 0.6 ± 

0.2. That is, 

 

   


























 





2

1ln1ln
5.0exp

12

1
)(

aa

aAR

AR
ARP







. 

 

(S.24) 

The treatment of the dust particle height is impeded by two factors. First, there is only one detailed 

quantitative study of the probability distribution of dust particle heights78, which also was taken of Asian 

dust rather than the globally more important North African dust. Second, the presence of very aspherical 

dust aerosols suggested by this study is difficult to account for, because the optical properties of highly 

aspherical particles are difficult to calculate and thus very uncertain85-88, and are consequently not 

included in the Meng et al.60 single-scattering database. We therefore cannot realistically account for the 

distribution of particle heights, or its uncertainty, and instead take the height-to-length ratio as 𝜀ℎ̅̅̅ = 0.333, 

based on the limited available measurements78, 79, 84. 

Note that we assume dust particles are randomly oriented85, and that we cannot account for 

microscale roughness and thus have to assume dust particles are smooth. 

2.3 Obtaining the globally-averaged extinction efficiency and its uncertainty 
We use the single-scattering database of Meng et al.60 to convert the globally-averaged dust index of 

refraction and the ensemble of dust particle shapes to an ensemble of extinction efficiencies. We then take 

Qext(D) as the average extinction efficiency of dust particles in this ensemble with a given geometric 

diameter D. For reference, we also calculated the extinction efficiency of spherical dust particles from 

Mie theory89 and included both curves in Figure 1b. As expected, the non-spherical shape of dust aerosols 

substantially increases their extinction efficiency over the case of spherical particles85, 90. 

To obtain the uncertainty in Qext(D), we assumed that each of the parameters describing the refractive 

index of dust and the distribution of shapes is independent. This allowed us to obtain a large number of 

parameters sets by randomly choosing values from the normal distribution defined by the mean and 

standard error of each parameter as given above (n = 1.53 ± 0.03; log(-k) = -2.5 ± 0.3; 𝜀𝑎̅̅̅  = 1.7 ± 0.3 , 

and 𝜎𝜀𝑎
  = 0.6 ± 0.2). We then used the single-scattering database of Meng et al.60 to convert each set of 

parameters to a curve of Qext(D), yielding a large number (i.e., 105) of realizations of Qext(D). We obtained 

the 95% confidence interval as the range within which 95% of these functions fall, which is given as the 

gray shading in Figure 1b. This confidence interval thus captures the uncertainty in the globally-averaged 

extinction efficiency due to the experimental uncertainty in the dust optical properties and in the 

probability distribution for the dust particle shape, as a function of dust geometric diameter. 

3. Constraining the size-resolved global dust emission rate, loading, and 

DAOD 

The previous sections described the procedure for constraining the globally-averaged dust PSD and 

extinction efficiency. Equations (1)-(4) combine these with constraints on the global dust aerosol optical 

depth (DAOD) from our companion study59, yielding the size-resolved global atmospheric dust emission 

rate, and atmospheric mass loading  
𝑑𝑀atm

𝑑𝐷
 (Fig. 2b). Furthermore, the integrals over these quantities yield 



the global dust emission rate Femit (Fig. 3a) and mass loading Latm (Fig. 3b). We also calculate the size-

resolved DAOD from Eq. (2), yielding 
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However, in order to use the analytical framework of equations (1)-(4) to constrain these quantities, we 

need to propagate the uncertainties in the various physical parameters and analytical functions. Due to the 

complexity of these analytical functions, the covariance of their parameters, and their occurrence inside of 

integrals, we cannot parametrically estimate the uncertainty on the desired quantities. We thus instead 

obtain their probability distribution functions (pdfs) using a non-parametric method based on the 

bootstrap method30, 31, which is similar to the procedures described in Sections 1.1.2.3, 1.2.3, 1.3, and 2.3. 

Indeed, the procedures above have yielded a large number of parameter sets for each of the functions used 

in Eqs. (1)–(4), namely for the globally-averaged size-resolved dust PSD (
𝑑𝑉atm

𝑑𝐷
; see Section 1.3), the 

extinction efficiency (Qext(D); see Section 2.3), and the dust lifetime (T(D); see Section 1.2.3). Since these 

parameter sets are independent and identically distributed, we can apply the bootstrap technique to obtain 

pdfs of 
𝑑𝑀atm(𝐷)

𝑑𝐷
,

𝑑𝜏d(𝐷)

𝑑𝐷
, Latm, and Femit. Specifically, we obtained these pdfs as follows: 

1. We randomly selected a set of parameters from the bootstrap procedure performed on the 

functions 
𝑑𝑉𝑎𝑡𝑚

𝑑𝐷
, Qext(D), and T(D). 

2. We randomly assigned a value to the dust density from the normal distribution defined by its 

mean and standard error [ρd = (2.5 ± 0.2)∙103 kg/m3].  

3. We used equations (2) – (4) to calculate the value of ε. 

4. We randomly chose a value of τd from its probability distribution obtained in Ridley et al.59. 

5. We used equation (1) to obtain Latm. 

6. We used that �̅� = 𝐿atm/𝐹emit to obtain Femit. 

7. We used the value of Latm to obtain 
𝑑𝑀atm

𝑑𝐷
= 𝐿atm

𝑑𝑉atm

𝑑𝐷
. 

8. We used Eq. (S.25) to obtain 
𝑑𝜏𝑑

𝑑𝐷
. 

9. We repeated the procedure in steps 1-8 a large number of times (i.e., 105). 

Since the resulting distribution of values of  
𝑑𝑀atm(𝐷)

𝑑𝐷
,

𝑑𝜏d(𝐷)

𝑑𝐷
, Latm, and Femit correspond to their 

probability distributions30, 31, we obtained the 95% confidence intervals from the range in which 95% of 

the obtained values lie (grey shading in Fig. 2 and blue shading in Fig. 3). 

4. Constraining the dust direct radiative effect (DRE) 

The dust direct radiative effect is generated by extinction of radiation. It therefore is closely connected to 

the globally-averaged dust aerosol optical depth 𝜏d (e.g., Ref. 91), which is a measure of the global 

extinction of SW radiation by dust. Consequently, we constrain the dust DRE by combining results on the 

size-resolved DAOD (Fig. 2c) with simulations of the efficiency with which this extinction produces 

DRE at top-of-atmosphere (TOA). Specifically, we have that 
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where ζSW and ζLW denote the SW and LW contributions to the total DRE (ζ), and the radiative effect 

efficiencies ΩSW(𝐷) =
𝑑ζSW

𝑑𝜏d
 and ΩLW(𝐷) =

𝑑ζLW

𝑑𝜏d
 are the all sky DRE that dust of diameter D produces 

per unit DAOD, due to interactions with SW and LW radiation, respectively.  

The values of  ΩSW(𝐷) and ΩLW(𝐷) depend on numerous factors, including the spatial and temporal 

variability of dust, the surface albedo and surface emissivity, the vertical temperature profile, the 

distribution of radiatively-active species such as clouds and greenhouse gases, and the asymmetry 

parameter and single-scattering albedo of dust. We thus require global model simulations to estimate 



ΩSW(𝐷) and ΩLW(𝐷), for which we use results from four leading global models, namely CESM, GISS, 

GEOS-Chem, and WRF-Chem (see Fig. S3). The CESM simulations are described in Kok et al.34, with 

dust optical properties from Albani et al.92, and the methodology for obtaining the radiative effects for 

each particle bin are described in Conley et al.93. The GISS simulations are described in Miller et al.2 (see 

especially their Fig. 2), and the WRF-Chem and GEOS-Chem simulations are described in Sections 5.1 

and 5.2, respectively. All simulations use dust absorption properties that are consistent with recent 

findings that dust is less absorptive in the SW spectrum than previously thought74, 94, 95.  

Most global models unfortunately do not account for the radiative effects of scattering of LW 

radiation1. At TOA, the DRE from LW scattering likely accounts for about half1 of the total LW DRE for 

a variety of standard clear-sky conditions. However, we follow the conservative treatment of Miller et al.2 

in assuming that LW scattering enhances the radiative effect from LW absorption by a factor of 𝛽LW,scat 

= 0.3, thus accounting for only 23% of the LW DRE at TOA. As such, the constraints on LW warming by 

dust obtained here should be seen as conservative. 

We discretize Eq. (S.26) to obtain the SW (𝜒𝑖,𝑘,SW) and LW (𝜒𝑖,𝑘,LW) DRE for each particle bin k for 

each of the four global model simulations i: 

    kikii

D

D

d
kiiki DdD

dD

d
D

ki

ki

,,d,SW,,SW,SW,,

,

,




  




, 

        kikii

D

D

d
kiiki DdD

dD

d
D

ki

ki

,,d,LW,scatLW,,LW,scatLW,LW,, 11

,

,




  




, 

 

(S.27a) 

 

(S.27b) 

where the index k sums over the particle bins of global model simulation i, Di,k- and Di,k+ are respectively 

the lower and upper limits of particle size bin k of global model i, , and Δτd,i,k denotes the global optical 

depth produced by dust in the size range spanned by particle bin k in model i. The DRE in the SW and 

LW spectra is then the sum of that for the individual particle bins: 
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Since the global model simulations do not extend fully to Dmax = 20 m, the second term on the right-

hand side of Eq. (S.28) accounts for the DRE produced by dust with diameters ranging from the upper 

size limit accounted for by global model i (Dlim,i) to Dmax. We obtain the values of ΩSW(𝐷max) and 

ΩLW(𝐷max) by extrapolating the model results for smaller particle sizes (Fig. S3), thereby estimating both 

at 20 ± 8 Wm-2/d. Our results indicate that the global DRE due to dust with D > 20 m is negligible (see 

Fig. S4), though it could still be important on local and regional scales. 

4.1 Calculating the DRE using size-resolved DAOD from AeroCom simulations 
We aim to use Eqs. (S.27, S.28) to compute the DRE that would be produced by the atmospheric dust size 

distribution simulated by the seven AeroCom models (colored lines in Fig. 2b). To do so, we require the 

optical depth ∆𝜏d,𝑖,𝑘
𝑗

 that the mass size distribution of AeroCom model j would yield for particle bin k of 

global model i. We calculated ∆𝜏d,𝑖,𝑘
𝑗

 as follows96, 97 
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where the surface area-to-mass ratio A(D)/M(D) = 3/2ρdD (see Eq. 2). We obtained the mass size 

distribution for AeroCom model j, 
𝑑𝑀𝑗

𝑑𝐷
, by fitting power laws between the individual values of  

𝑑𝑀𝑗

𝑑𝐷
 given 

by each particle bin; these power laws correspond to the solid colored lines in Fig. 2b. The extinction 

coefficient Qext,sph was taken as that of spherical dust, consistent with the assumption of spherical dust 

made in AeroCom models2, 44-46, and thus calculated with Mie theory (brown line in Fig. 1b). To ensure 

that the results are consistent with reported AeroCom results, we normalized the sum of the optical depths 



of the particle bins with the total optical depth τd,j for the AeroCom model j, given in Table 3 of Huneeus 

et al.98. That is, 

 Δ𝜏′d,𝑖,𝑘
𝑗

= Δ𝜏d,𝑖,𝑘
𝑗 ∑ Δ𝜏d,𝑖,𝑘

𝑗
𝑘

𝜏d,𝑗
 

 

(S.30) 

where ∆𝜏′d,𝑖,𝑘
𝑗

 is the normalized optical depth for each particle bin. We inserted ∆𝜏′d,𝑖,𝑘
𝑗

 into Eq. (S.27) to 

calculate the DRE for each particle bin of each combination of global model i and AeroCom model j. 

These results are shown in Figs. S4a-d for the four global models CESM, GISS, GEOS-Chem, and WRF-

Chem; the error bars in these figures represent the spread from using ∆𝜏′d,𝑖,𝑘
𝑗

 from the seven AeroCom 

models. We also use a similar procedure to Eqs. (S.29) and (S.30) to calculate the size-resolved dust 

optical depth (i.e., d𝜏′
d/d𝐷) for each AeroCom model, which is plotted in Fig. 2c. 

We combined the above procedure with Eq. (S.28) to obtain a total of 28 estimates of the total TOA 

dust DRE, which resulted from the combination of seven AeroCom models with four global model 

calculations of Ω(D). Fig. 4 shows the median of these 28 values and the 95% CI, which we estimated 

from the range of the 26 values remaining after eliminating the two extreme values. Fig. 4 also shows six 

published estimates of DRE from AeroCom models2, 74, 95, 99, although two of the three estimates in Forster 

et al.95 include the SW radiative effect only. 

4.2 Calculating the DRE using this study’s constraints on the size-resolved DAOD  
In addition to using the size-resolved dust loading from AeroCom simulations to calculate the dust DRE, 

we use the constraints on Δτd,i,k from our analysis (see Figs. 2c and S1c) to calculate the DRE. 

Specifically, we inserted a large number (105) of realizations of Δτd,i,k (see Section 3) into Eq. (S.27) to 

obtain the pdfs of 𝜒𝑖,𝑘,SW and 𝜒𝑖,𝑘,LW, for which the median and the 95% CI are plotted in Figs. S4e-h. 

The difference of the radiative effect per particle bin with those calculated using the size-resolved dust 

loading from AeroCom models is shown in Figs. S4i-l. We then inserted these 105 realizations of 𝜒𝑖,𝑘,SW 

and 𝜒𝑖,𝑘,LW into Eq. (S.28) to obtain the pdfs of ζi,SW and ζi,LW (see Figs. S5a, b). Finally, we used ζ i,SW 

and ζi,LW in the following procedure to obtain the pdf of the total DRE (ζ): 

1. Obtain a realization of 
𝑑𝜏𝑑

𝑑𝐷
 (see Section 3). 

2. Randomly pick one of the four global models providing ΩSW(𝐷) (Fig. S3a) and randomly select a 

corresponding realization of ζSW. 

3. Randomly pick one of the four global models providing ΩLW(𝐷) (Fig. S3b) and randomly select 

a corresponding realization of ζLW.  

4. Obtain a realization of the total DRE from ζ = ζSW + ζLW. 

5. Repeat steps 1-4 a large number of times (105) to obtain the pdf of ζ, which is plotted in Fig. S5c. 

We report the median and 95% CI of the probability distributions of ζSW, ζLW, and ζ in Fig. 4.  

5. Global transport model simulations 

To supplement the size-resolved dust lifetimes that have been reported in the literature32-36, 40, we 

performed simulations with a number of leading global transport and climate models, namely WRF-

Chem, GEOS-Chem, and HadGEM. Simulations with the first two models were also used to supplement 

the size-resolved radiative effect efficiencies obtained from previously-reported simulations with CESM34 

and GISS2. We describe the simulations with these three models below. 

5.1 Description of WRF-Chem simulations 
We used WRF-Chem version 3.5.1, updated by the Pacific Northwest National Laboratory (PNNL), 

to simulate the dust aerosol lifetime (Fig. 1d) and the size-resolved radiative effect efficiency (Fig. S3), 

averaged over the years 2004-2008. Our simulations used the MOSAIC (Model for Simulation Aerosol 

Interactions and Chemistry) aerosol module100 coupled with the CBM-Z (carbon bond mechanism) 

photochemical mechanism101. The MOSAIC aerosol scheme uses the sectional approach to represent 

aerosol size distributions with eight discrete size bins102, extending to 10 m diameter. All major aerosol 

components, including sulfate (SO4
−2), nitrate (NO3

−), ammonium (NH4
+), black carbon (BC), organic 



matter (OM), sea-salt, methanesulfonic acid, and mineral dust are simulated in the model. The MOSAIC 

aerosol scheme includes physical and chemical processes of nucleation, condensation, coagulation, 

aqueous phase chemistry, and water uptake by aerosols. The treatment of dry and wet deposition 

processes are described in Refs. 103, 104. 

In WRF-Chem, aerosol optical properties such as extinction, single-scattering albedo (SSA), and 

asymmetry factor for scattering are computed as a function of wavelength for each model grid box. 

Aerosols are assumed internally mixed in each bin, i.e., a complex refractive index is calculated by 

volume averaging for each bin for each chemical constituent of aerosols. The Optical Properties of 

Aerosols and Clouds (OPAC) dataset105 is used for the SW and LW refractive indices of aerosols, except 

that a constant value of 1.53+0.003i is used for the SW refractive index of dust following Zhao et al.106, 

107, which is consistent with recent insights62, 63, 74, 94. A detailed description of the computation of aerosol 

optical properties in WRF-Chem can be found in Fast et al.102 and Barnard et al.108. Aerosol radiative 

feedback is coupled with the Rapid Radiative Transfer Model (RRTMG)109, 110 for both shortwave (SW) 

and longwave (LW) radiation107. Since aerosols in WRF-Chem are assumed internally mixed, the optical 

properties and direct radiative forcing of individual aerosol species in the atmosphere is not explicitly 

calculated. Instead, the methodology described in Zhao et al.104 is used to diagnose the optical depth and 

direct radiative effect of individual aerosol species. Therefore, large uncertainties in estimating radiative 

effects of one individual aerosol species can be introduced in the case of very low mass concentrations. In 

this study, we found that dust mass concentrations in the first three bins (0.039 – 0.078, 0.078 – 0.156, 

and 0.156 – 0.312 m) are quite low. Since such low concentrations produce large relative uncertainties 

in estimating the particle bin’s radiative effects, we omitted those bins in our calculation of DRE using the 

WRF-Chem simulations. 

Following Zhao et al.103, we used a quasi-global channel configuration (using periodic boundary 

conditions in the zonal direction) with 360 × 145 grid cells (180° W-180° E, 67.5° S-77.5° N) to perform 

the simulation at 1° horizontal resolution over the period of 2004-2008. The simulations are configured 

with 35 vertical layers up to 50 hPa. The meteorological initial and lateral boundary (only for the 

meridional direction) conditions are derived from the National Center for Environmental Prediction final 

analysis (NCEP/FNL) data at 1° horizontal resolution and 6 h temporal intervals. The modeled wind 

components and atmospheric temperature are nudged towards the NCEP/FNL reanalysis data with a 

nudging timescale of 6 hr111. The chemical initial and boundary (only for the meridional direction) 

conditions are taken from the default profiles in WRF-Chem, which are the same as those used by 

McKeen et al.112 and are based on averages of mid-latitude aircraft profiles from several field studies over 

the eastern Pacific Ocean. This study uses a set of selected schemes for model physics, including the MYJ 

(Mellor–Yamada–Janjic) planetary boundary layer scheme, Noah land surface scheme, Morrison 2-

moment microphysics scheme, Kain-Fritsch cumulus scheme, and RRTMG longwave and shortwave 

radiation schemes. 

Vertical dust emission fluxes are calculated with the Goddard Chemical Aerosol Radiation Transport 

(GOCART) dust emission scheme45, and the emitted dust particles are distributed into the MOSAIC 

aerosol size bins following the theoretical expression of Kok10.  

5.2 Description of GEOS-Chem simulations 
We used simulations with GEOS-Chem (version v9-01-03; http://www.geos-chem.org/) for the years 

2004 – 2008 to simulate both the dust aerosol lifetime (Fig. 1d) and the size-resolved radiative effect 

efficiency (Fig. S3). The GEOS-Chem model incorporates a global three-dimensional simulation of 

coupled oxidant–aerosol chemistry, run at a resolution of 2° ×2.5° latitude and longitude, and 47 vertical 

levels. The model is driven by assimilated MERRA meteorology from the Goddard Earth Observing 

System of the NASA Global Modeling and Assimilation Office (GMAO), including assimilated 

meteorological fields at 1-hourly and 3-hourly temporal resolution. The aerosol types simulated include 

sulfate–nitrate–ammonium aerosols113, and carbonaceous aerosols114-116, mineral dust46, 117 and sea salt118. 

Dust emission in GEOS-Chem is based upon the DEAD dust scheme46, making use of the GOCART 

source function45. Mineral dust mass is transported in four different sized bins (0.1–1.0, 1.0–1.8, 1.8–3.0 



and 3.0–6.0 μm), the smallest of which is partitioned into four bins (0.10–0.18, 0.18–0.30, 0.30–0.65 and 

0.65–1.00 μm) when deriving optical properties, owing to the strong size dependence of extinction for 

sub-micron aerosol. Dust emission is modified from the standard model to treat 10-m wind fields as a 

Weibull distribution based on sub-grid wind statistics119. Aerosol optical depth (AOD) is calculated online 

assuming log-normal size distributions of externally mixed aerosols and is a function of the local relative 

humidity to account for hygroscopic growth120. Aerosol optical properties employed here are based on the 

Global Aerosol Data Set (GADS)121 with modifications to the size distribution based on field 

observations41, 122, 123, and modifications to the dust refractive indices to match the observed lower SW 

absorption124. The refractive indices for each species are interpolated to the 30 wavelengths, between 230 

nm and 56 µm, used by the radiative transfer code (RRTMG) coupled with GEOS-Chem125. Surface 

albedo and emissivity are generated from MODIS (MOD11C2 and MCD43C3 products) to provide 8-day 

averages for a climatology between 2002 and 2007. Cloud optical properties are calculated based on 

liquid and ice optical depths from the MERRA meteorology with cloud overlap treated using the Monte 

Carlo independent column approximation (McICA)126. The radiative transfer code is run twice every 3 

hours in the simulation, once to calculate the flux with all aerosol and a second time with only non-dust 

aerosol. The difference yields the direct radiative effect (DRE) of dust aerosols.  

5.3 Description of HadGEM simulations 
The design and the implementation of the UK MetOffice HadGEM2 model family is described in 

Martin et al.127 in detail. For our experiment, we simulated the dust aerosol lifetime (Fig. 1d) using the 

HadGEM2-A model version, which is the atmosphere only version of the global model, run with 

prescribed SSTs and sea ice climatology updated every 24 hours. Both are based on the Reynolds SST 

Analysis128, averaged over the 1995-2005 period. The vertically-extended HI-TOP version of the model 

was used, with 85 levels extending to 85km height. The horizontal resolution is 1.25 degrees (latitudinal) 

by 1.875 degrees (longitudinal), which produces a global grid of 192 x 145 grid cells (N96). This is 

equivalent to a surface resolution of about 208x139 km2 at the Equator, reducing to 120x139 km2 at 55 

degrees of latitude. 

Six aerosol species are incorporated in the model using the CLASSIC aerosol scheme129: sulfate, 

black carbon, biomass burning elemental carbon, fossil fuel organic carbon, mineral dust, and sea salt 

aerosols. We use monthly averages of Atmospheric Optical Depth (AOD) at 550 nm wavelength for each 

component, which is available as a prognostic model quantity, except for Sea Salt when it is a diagnosed 

quantity. Emission datasets for aerosol precursors and primary aerosols have been revised with the 

HadGEM2 family, using datasets created in support of CMIP5129-132.   

The models dust emission scheme has remained unchanged compared to earlier versions of 

HadGEM133, 134. It is based on the widely used emission parameterization developed by Marticorena and 

Bergametti 12. The horizontal flux is calculated for 9 model size bins with boundaries at 0.0316, 0.1, 

0.316, 1, 3.16, 10, 31.6, 100, 316 and 1000 µm radius. The vertical emission flux is calculated for 6 

model size bins in the size range between 0.0316 to 31.6 µm radius (same bin intervals). The horizontal-

to-vertical-mass flux ratio is assumed to be a constant of proportionality as a function of particle size. The 

mass fraction of particles in each size bin is calculated off-line from the clay, silt and sand fraction data 

from the International Geosphere-Biosphere Programme (IGBP) global soil data. The threshold friction 

velocity is also fixed for each size bin. Soil moisture and roughness corrections follow the method of 

Fecan et al.135 and Marticorena and Bergametti 12, respectively. 

In order to constrain the dust emission flux over major source regions, the concept of preferential 

sources that vary as a function of topography is applied45. Once emitted, the dust aerosols are treated as 

independent tracers in the atmosphere, such as all the other aerosol species. Sedimentation and turbulent 

mixing are considered as dry removal mechanisms of dust particles from the atmosphere. Wet removal 

due to precipitation scavenging within and below cloud for both large-scale and convective precipitation 

is included using a first-order removal rate133. Finally, dust-radiation interaction through SW and LW 

direct effects is permitted in the model. 
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