Space-Based Ka-Band Direct Radiating Phased Array Antenna Architecture for Limited Field of View

Raine N. Simons, Ph.D.
NASA Glenn Research Center, MS: 54-1
21000 Brookpark Road
Cleveland, OH 44135, USA

Tuesday, June 28, 2016, 08:00 – 08:20
Culebra
Introduction – Motivation

Problem or Challenge

Space Borne Phased Array Antenna
- Scan Coverage
- Array Design Methodology
- Array Element & Feed Design
- Array Size vs. Number of Elements
- Optimum Element Size
- Array Grid Arrangement

Beam-Forming Network
- Overlapped Sub-Array Techniques

Power Amplifier Modules
- Gallium Nitride (GaN) Based Power Amplifiers (PAs)

Conclusions
To investigate the feasibility of designing a direct radiating phased array antenna as a replacement for the TDRS reflector antennas without compromising performance (EIRP = 63 dBW, G/T = 26.5 dB/K, bandwidth, etc.)

Specifically, to investigate if a phased array with microstrip patch antenna elements coupled with Gallium Nitride (GaN) based amplifiers can meet the above requirements.
The altitude $h = 35,786$ km above mean sea level & Earth’s radius $r_e = 6378$ km

At such a distance, the Earth subtends a small conical angle of $\theta = \pm 8.7^\circ$. Consequently, the phased array onboard the relay satellite has to scan a limited field of view (LFOV).
Individual Beam Scan Angle Within a Coverage

Phased Array on Satellite

Total Coverage Angle

Scan Angle, θ, Away From Nadir

Nadir direction

Edge Of Coverage (EoC)

Section Through Surface of Earth

Required Coverage

Diameter of Spot Size on Ground is the 3 dB Beam Width
Array Design Methodology

★ Step 1: Antenna Element
★ Step 2: Array Size
★ Step 3: Element Size

▸ The computations are carried out using the equations presented in the following reference:

★ Step 4: Beam-Forming Network
Antenna Element

★ Aperture Coupled Circularly Polarized (CP) Microstrip Patch Antenna

➢ Key Advantages

✦ Patch antenna and the feed network reside on two separate dielectric substrates of different relative permittivity and thickness

✦ Gain/bandwidth of the patch antenna and the efficiency of the feed network can be independently optimized

✦ The two substrates can either be in intimate contact or can be separated by a small air gap to enhance coupling efficiency
Antenna Element & Feed Design

Antenna Superstrate
($\varepsilon_0\varepsilon_{r1} = 10.2$, 0.254 mm)

Symmetric Cross Aperture

50 Ω
Microstrip Feed Line

Feed Substrate
($\varepsilon_0\varepsilon_{r2} = 2.2$, 0.254 mm)

Square Patch with Corners Truncated

W_s, W_m, L_{oc}

50 Ω Microstrip Feed Line
Beam-Forming Network

★ Overlapped Sub-Array Technique

➢ Key Advantages
 ✧ Significant reduction in the number of control elements, such as variable gain amplifiers and phase-shifters, required to achieve the desired scan performance
 ✧ Significant reduction in the array complexity, power consumption, overall size/mass, and cost.
 ✧ Enhanced overall antenna reliability
Power Amplifier Modules

★ Gallium Nitride (GaN) Based Power Amplifiers (PAs)

- Key Advantages
 ✦ GaN PAs have three to four times higher output power density than gallium arsenide (GaAs) based PAs
 ✦ GaN transistors can operate at higher junction temperatures than GaAs transistors

- Output Power
 ✦ Ka-Band GaN-on-SiC MMIC PAs with output power on the order of 5W are commercially available.
Conclusions

★ Design methodology for a direct radiating phased array Antenna for limited field of view (LFOV) has been presented

★ The number of array elements required for a given scan gain and scan angle has been presented

★ The edge of coverage directivity as a function of the element size has been presented

★ The optimum array elements size for the desired LFOV of ±8.7° has been presented

★ By integrating a GaN power amplifier with each sub-array input terminal the desired EIRP can be achieved

➢ For example: It has been shown that an array of 1225 elements has a directivity > 40 dB and if each element radiates 1W, the target EIRP of 63 dBW can be achieved