Oxidation of Alumina-Forming MAX Phases in Turbine Environments

James Smialek, Anita Garg, Bryan Harder, James Nesbitt, Timothy Gabb, Simon Gray*

NASA Glenn Research Center, Cleveland, OH *Cranfield University, Cranfield, UK

Materials for High Temperature Applications: Next Generation Superalloys and Beyond TMS Annual Mtg., San Diego, CA, Feb 26 - Mar 2

Strain Tolerance: Kinking and Crack Deflection in Cr₂Al(Si)C Bend test fracture; basal plane nano-laminate

W. Yu, S. Li, W.G. Sloof, 2007

Lin et al. 2006

$$K_{IC} = 6.6 \text{ MPa}/\text{m}^{1/2}$$

(0001) Sliding (Cr-Al)/(Cr-C)=0.40 σ_{bond} , 0.43 $\gamma_{cleav.}$

Commercial Ti₂AlC 211 MAXthal (Sandvik/Kanthal)

M. Sundberg, G. Malmqvist, A. Magnusson, T. El-Raghy, 2004

8000 cycles to 1350°C!

Thermal Shock of M₂AIC

(thermal conductivity x strength) / (CTE x modulus)

1

Some ~50 MPa Ti₃SiC₂ High Temperature Bend Strength (Sun, 2006)

Motivation and Rationale Ti₃AIC₂, Ti₂AIC, Cr₂AIC

- α -Al₂O₃ formers, (slow, low-volatility)
- Na₂SO₄ corrosion resistance
- CTE close to YSZ, α -Al₂O₃
- Damage (Strain ?) tolerance, nano-laminate shear, machinable
- Thermal shock resistance: ~1400°C quench
- $K_{IC} \approx 7 \text{ MPa} \cdot m^{1/2}$

Purpose: Relate AI-MAX phases to Coatings and turbine environments

Kanthal Ti₂AlC, Cr₂AlC

- 1. High temperature α -Al₂O₃ kinetics
- 2. High pressure burner rig
- 3. YSZ Thermal Barrier Coatings
- 4. Superalloy/MAX Phase Hybrids
- 5. Hot corrosion/LCF

Al-MAX Phases and Turbine Environments

1) High temperature α -Al₂O₃ kinetics

- Al₂O₃ grain boundary diffusivity
- transient TiO₂ growth
- cubic kinetics

"Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales," NASA TM 217855, pp. 1–14, August 2013.

"Kinetic Aspects of Ti₂AlC Oxidation," Oxidation of Metals, 83 (2015) 351

"Oxygen diffusivity in alumina scales grown on Al-MAX phases," *Corrosion Science*, vol. 91, pp. 281–286, Feb. 2015.

Al-MAX Phases and Turbine Environments

2) First high pressure burner rig test of Ti₂AIC

(1100°-1300°C, Jet A fuel, 25 m/s,

6 atm., 10% water vapor)

- transient TiO₂ growth
- cubic kinetics
- H₂O scale volatility issues (?)

"Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig," *J. Eur. Ceram. Soc.* 37 (2017) 23–34.

High Pressure Burner Rig $H_2O \approx 10\%$

Up to ~1500°C, ~15 atm, ~200 m/s (decommissioned 2016)

HPBR SiC/SiC CMC Paralinear Weight Change (1100 °-1300°C, 6 atm, 25 m/s; Robinson/Smialek 1998)

HPBR Recession Rates for Ti₂AIC and SiC

Hybrid Concepts (EBC/TBC) Enabled by MAX Phases

Intermediate CTE, Strain Tolerance, YSZ Compatibility

Liner, Seals, Bond Coats (?)

CTE (10⁻⁶/°C)

AI-MAX Phases and Turbine Environments

Baseline 1150°C/<1000 h life (YSZ/Ni(Pt)Al on CMSX-4)

3) YSZ Thermal Barrier Coatings on MAX Phases

- APS and PS-PVD (~100 μm)
- Ti₂AIC (CTE 9); Cr₂AIC (CTE 13)
- Stepped furnace test
 - 1100° 1300° C
 - 500 h each \rightarrow 2500 h

"Oxidative Durability of TBCs on MAX Phase Substrates," Surface and Coatings Technology, <u>285</u>, 15 2016, 77–86.

Plasma Spray-Physical Vapor Deposition PS-PVD

Interrupted Oxidation of PS-PVD YSZ on Ti₂AIC

Intact PS-PVD TBC (Ti₂AIC,1300°C, 500 h) SEM/BSE

TBC FCT Life Comparison to Literature: "The 7 µm Rule"

Alumina Scale Thickness at TBC Failure

"Compiled furnace cyclic lives of EB-PVD thermal barrier coatings," Surface & Coatings Technology 276 (2015) 31–38.

EB-PVD TBC FCT Life on Alumina-Forming Systems

Hybrid Concepts with MAX Phases

Intermediate CTE, Strain Tolerance,

LTHC Corrosion Resistance

CTE, 10⁻⁶/°C

Na ₂ SO ₄		Salt	
Al(Cr) ₂ O ₃	9	Scale	
Cr ₂ AIC	13	Bond Coat	
Superalloy	15	Substrates	Interface stability

Al-MAX Phases and Turbine Environments

4) Cr₂AIC / Ni-base Superalloys Interfacial Stability: LTHC Corrosion resistant coating? (92% LCF deficit)

1100°C hot pressed diffusion couples

- 0.3 3 mm, 2 h @ 10⁻⁶ torr
- Cr₂AIC on LSHR disk alloy (or Rene'N5)

800°C (or 1150°C) diffusion/oxidation

• 100 h, 1000 h

"Interfacial Reactions of a MAX Phase-Superalloy Hybrid" Surface and Interface Analysis, 276 (2015) 31

Survives 1000 h of 800°C Furnace Oxidation LSHR - Cr₂AIC DC3 Hybrid Couple

As-Hot Pressed Cross Section (2h @ 1100°C produced ~ 50 µm layer)

SEM/BSE

Cr₂AIC-Rene'N5 Hybrid Couple: Interdiffusion at 1150°C

DC4: Cr₂AlC/N5 (1150°C, 100 h) 200-250 x

Hybrid Concepts with MAX Phases

Intermediate CTE, Strain Tolerance,

LTHC Corrosion Resistance

CTE, 10⁻⁶/°C

Na ₂ SO ₄		Salt	
Al(Cr) ₂ O ₃	9	Scale	
Cr ₂ AIC	13	Bond Coat	Critical chemistry
Superalloy	15	Substrates	

Al-MAX Phases and Turbine Environments

5) Cr₂AIC / Disk Alloy Hot Corrosion:

700°C *bulk* LTHC: 500 h, (Na,K)₂SO₄ (T_e= 823°C)

760°C *Coated* LSHR LCF: 840 / -430 MPa at 0.33Hz 50 h, (Na,Mg)₂SO₄ (T_e= 660°C)

Type II LTHC of Cr₂AlC (3) and Superalloys (7) 700°C, 500 h, 0.5 mg/cm² salt recoat every 50 h

500hrs, surface macros

www.cranfield.ac.uk

500hrs, section SEM

Cranfield UNIVERSITY Dr. Simon Gray

www.cranfield.ac.uk

Cr₂AlC Corrosion Resistance on LSHR Disk Alloy (LCF Samples)

As- processed heat treated 760°C, 8 h +760°C, 500 h oxidation + 50 h hot corrosion

Ti₂AIC, Cr₂AIC MAX Phases: Items of Potential Interest for Turbines

- Rate Control by Al₂O₃ grain boundary diffusion; cubic rate protective to 1400°C; Q = 334 kJ/mole
- 2. Ti_2AIC stable in 1300°C combustion (HPBR) gas.
- 3. Extensive TBC furnace life @ 1300° C for Ti₂AlC.
- Superalloy / Cr₂AIC hybrids stable: 800°C, but not 1150°C.
- 5. Minimal 700° C Type II LTHC of Cr₂AIC

INTRIGUING ALUMINA FORMERS

Ti₃AlC₂, Ti₂AlC, Cr₂AlC MAX Phase **Oxidative Shortcomings**

1. Ti_2AIC breakaway TiO_2 growth:

< critical AI content; or damaged areas

- 2. Cr_2AIC isothermal oxidation: CrO_3 losses (Cr_7C_3)
- 3. Cr_2AIC cyclic oxidation:

interfacial spallation; Cr₇C₃ depletion zones

4. Superalloy / Cr₂AIC compatibility:

interdiffusion at, delamination from 1150°C.

Al-MAX Phases and Turbine Environments Current Engineering Assessment

substrate	MAX phase	top coat	use	advantage	max temp.
none	Ti ₂ AIC	none	gas path	protective k _c , low volatility, adherent Al ₂ O ₃	~1300°C
none	Ti ₂ AIC	YSZ	TBC	CTE match, adherent Al ₂ O ₃	~1300°C
superalloy	Cr ₂ AIC	none	hot corrosion	higher CTE, Cr, Al	~900°C