
Operation and Development 
Status of the Spacecraft Fire 
Experiment (Saffire)

Advanced Exploration Systems Division

Gary A. Ruff and David L. Urban
NASA John H. Glenn Research Center
Cleveland, OH

July 13, 2016



International Topical Team

 Sandra Olson, NASA Glenn Research Center, Cleveland, OH
 Paul Ferkul, NASA Glenn Research Center, Cleveland, OH
 Carlos Fernandez-Pello, UC Berkeley, Berkeley, CA, USA
 James S. T’ien , Case Western Reserve University, Cleveland, OH, USA
 Ya-Ting Liao, Case Western Reserve University, Cleveland, OH, USA
 Jose L. Torero, University of Queensland, Brisbane, Australia
 Guillaume Legros, Université Pierre et Marie Curie, Paris, France
 Christian Eigenbrod, University of Bremen (ZARM), Bremen, Germany
 Nickolay Smirnov, Moscow Lomonosov State University, Moscow, Russia
 Osamu Fujita, Hokkaido University, Sapporo, Japan
 Sebastien Rouvreau, Belisama R&D, Toulouse, France
 Balazs Toth, ESA ESTEC, Noordwijk, Netherlands
 Grunde Jomaas, Technical University of Denmark, Kgs. Lyngby, Denmark

2



Spacecraft Fire Safety Demonstration

• Project Background and Objectives
• Saffire Hardware
• Flight Operations
• Preliminary Results
• Spacecraft Fire Safety Technology Needs
• Saffire-IV-VI Objectives and Plans
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Saffire-I, II, & III Overview
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Saffire module consists of a flow duct 
containing the sample card and an 
avionics bay. All power, computer, and 
data acquisition modules are contained 
in the bay. Dimensions are 
approximately 53- by 90- by 133-cm
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Needs:
 Low-g flammability limits for spacecraft 

materials
 Definition of realistic fires for exploration 

vehicles
‒ Fate of a large-scale spacecraft fire

Objectives:
 Saffire-I: Assess flame spread of large-

scale microgravity fire (spread 
rate, mass consumption, heat 
release)

 Saffire-II: Verify oxygen flammability limits 
in low gravity

 Saffire-III: Same as Saffire-I but at different 
flow conditions.

• Data obtained from the experiment will be used to 
validate modeling of spacecraft fire response 
scenarios

• Evaluate NASA’s normal-gravity material 
flammability screening test for low-gravity conditions.



Sample Card Holder Configurations

Saffire-I, -III Sample Card
Composite fabric (SIBAL cloth)

(75% cotton – 25% fiberglass by mass)
(0.4 m x 0.95 m)

Saffire-II Sample Card

 Sample card and samples are the only differences between the three 
flight units 

Saffire-II Samples (5 cm x 29 cm)
• PMMA (flat and structured)
• Silicone (3 thicknesses, different 

ignition direction)
• SIBAL
• Nomex (with PMMA ignition)
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Operations Concept
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Saffire-I Integration
January 2016
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Saffire-I 
Integration. 
NASA-KSC

Saffire-I hardware 
strapped into the 
Cygnus Pressurized 
Cargo Module



Saffire-I Launch and Berthing
March 22

 Successful launch of Saffire-I onboard Cygnus OA-6 (SS Rick Husband) on 
March 22
 Orbital ATK reported that OA-6 had a nominal ascent.

‒ Spacecraft Mission Director reported to the Saffire team “Vehicle is good. PCM is 
good. All inhibits in place. Enjoy the ride.”
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 OA-6 Pressurized Cargo Module (PCM) 
berthed to the ISS on Saturday, March 26 
with crew ingress into the PCM on March 27
 The crew took on-orbit photographs of 

Saffire-I (right)

Saffire-I photograph taken 
by the ISS crew following 
initial ingress to the PCM

Launch of OA-6 on 
March 22 carrying 
Saffire-I



Saffire-I Operations
June 14-20, 2016
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 OA-6 unberthed from the ISS at 9:30 
a.m. EDT on June 22

 Saffire-I was powered on at 2:23 p.m.
 RUN command was sent at 4:41 p.m.

 Ignition at 4:44 p.m. 
 Cygnus smoke detector readings 

received at 4:52 p.m. 

NASA and Orbital ATK teams at MCC-Dulles 
(above) and Flight Operations-GRC (right) 
conducted and monitored Saffire-I operations

 Operations received considerable 
coverage on social media
 NASA GRC and AES



Saffire-I Operations
Smoke Flow Visualization (Pre-Test)

 Smoke line 
visualization of the 
flow in the Saffire-I 
duct.
• (Top) smoke line 

image with lens 
distortion.

• (Bottom) Image 
with distortion 
correction 
showing later 
smoke lines.

• The flow is from 
right to left.
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Flow

Camera 1 and 2 images as recorded (with distortion)

Camera 1 and 2 images with distortion correction



Saffire-I Operations
Concurrent Flow Igniter

Saffire-I sample material at the beginning of the concurrent (upstream) burn. 
Thermocouple wires are sewn into the sample material with thermocouple beads at 
various heights in the center of the sample.
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Saffire-I Operations
Concurrent Flow Igniter

Video of the first 30 seconds of the Saffire-I concurrent (upstream) burn. The 
green LED is on for 1 second and off for two seconds (1 second out of three). Shorter 
times indicate missing downlinked frames.
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Saffire-I Operations
So, how big is the flame?

Saffire-I flame compared to a flame from the Burning and Suppression of Solids (BASS) 
experiment conducted in the Microgravity Science Glovebox . Camera exposures and gains 
are different between the two experiments.
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The length of the
Saffire-I  sample is 94 cm; 
the BASS sample is 7 cm 
long



Saffire-I Operations
Opposed Flow Igniter

Saffire-I sample material at the beginning of the opposed flow (downstream) burn. The light 
portion of the image is sample material unburned from the concurrent burn. A second set of 
thermocouple wires are sewn into the sample material with thermocouple beads at various heights 
in the center of the sample. 14
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Saffire-I Operations
Opposed Flow Igniter

Video of the Saffire-I opposed flow (downstream) burn. The green LED is on for 1 second and 
off for two seconds (1 second out of three). Shorter illumination durations indicate missing 
downlinked frames.

15

Flow

40 cm



Saffire-I
End-of-Mission

 Saffire-I relays were opened at 9:41:48 p.m. on June 19, 2016 ending the 
mission

 Cygnus OA-6 deployed CubeSat experiments on June 20
 Cygnus de-orbited on June 21, 11:29 p.m.



Saffire-I Future Analysis

 Location of pyrolysis front, flame base, and flame length vs. time for concurrent 
and opposed flame spread (rate of flame spread)

 Pulsation frequency of the concurrent flame
 Comparison with computational models of the concurrent and opposed flow 

flames
 Pressure and temperature rise of the Cygnus vehicle during combustion
 Transport of smoke aerosol in the Cygnus vehicle
 Estimate of the free volume of the Cygnus vehicle
 Impact on operation of Saffire-II and III

 Analyses will be performed by researchers from NASA and the International 
Topical Team and published in various papers
 Data will also be posted to NASA Physical Sciences Informatics System 

(psi.nasa.gov)



Saffire-II
Samples 
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PMMA

SIBAL
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Silicone 
(opposed) 

Silicone

 Samples are 5 cm x 29 cm
 Four different sample materials

• Concurrent and opposed for 
Silicone

 Motivation
• Previous low-g data (small scale)
• Material flammability limits
• NASA-STD-6001 Test 1
• Spacecraft fire safety strategy

 Thermocouples mounted on the 
SIBAL and Nomex samples

 Saffire-III sample material will be the 
same as Saffire-I
 Flow will be close to 30 cm/sec as 

opposed to 20 cm/sec for Saffire-I



Spacecraft Fire Safety Demonstration
Saffire-II and III Launch Dates

 Orb-3
 Launch occurred on October 28, 2014 which would have been its fourth to 

the International Space Station and the fifth of an Antares launch vehicle
 Fifteen seconds after liftoff a failure of propulsion occurred in the first stage

 OA-5 launch NET 8/23 with deberth on September 10 (as of 7/8/2016)
19

Orb-3 Failure



What’s Next for Saffire?

 Fire Safety System Maturation Team have defined fire safety 
needs for exploration vehicles
 Low and partial-gravity material flammability
 Fire detection
 Fire suppression
 Emergency crew mask
 Post-fire (combustion product) monitoring
 Post-fire cleanup
 Fire scenario modeling and analysis

 NASA’s Advanced Exploration Systems Division has authorized 
the development of Saffire-IV-VI to address remaining capability 
and technology gaps
• Following the Saffire-I-III flights, conduct additional tests of material 

flammability but include fire detection, suppression, and clean-up capabilities
• International Topical Team helping to define science objectives
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Saffire-IV, V, and VI Overview
Needs:
 Demonstrate spacecraft fire detection, 

monitoring, and cleanup technologies in a 
realistic fire scenario

 Characterize fire growth in high O2/low 
pressure atmospheres

 Provide data to validate models of realistic 
spacecraft fire scenarios

Objectives:
 Saffire-IV: Assess flame spread of large-

scale microgravity fire (spread 
rate, mass consumption, heat 
release) in exploration atm

 Saffire-V: Evaluate fire behavior on 
realistic geometries

 Saffire-VI: Assess existing material 
configuration control guidelines

 All flights will demonstrate fire detection,  
monitoring, and cleanup technology
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Combustion Product Monitor

Avionics

CO2 Filter

Smoke Eater

Particulate monitors 
(DuctTrak & Ion chamber)

Conceptual design of Saffire-IV-VI experiment module. 
Dimensions are approximately 53- by 90- by 133-cm. 
additions from previous Saffire include side view of sample 
card and oxygen addition.



Saffire-IV, V, and VI
Status
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Saffire Flow Unit

Far Field Diagnostic 
containing Smoke-
eater, combustion 

product monitor, and 
particulate diagnostics

 Conducted a TIM in February 2016 with GRC Project Team and developers of post-
fire monitoring and cleanup technologies
 Set-up regular design meetings with engineering teams

 Developing experiment hardware concept that meets preliminary objectives
 Reviewed Saffire-IV, -V, and –VI with NASA Fire Safety SMT & stakeholders on

April 6
 Strongly supported flammability objectives and gave suggestions for technology 

demonstration objectives
 Plan to conduct Mission Concept Review/System Requirement Review on August 3
 CDR in Dec 2015/Jan 2016 timeframe



Spacecraft Fire Safety Demonstration Objectives
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Area Objective Comment Saffire-I, II, 
III

Saffire-IV, 
V, VI Ground

Fire behavior/modeling: 
Quantify growth and end state of realistic fires 
in spacecraft and their influence on vehicle 
habitability

Require to validate computational 
models X X

 Flame behavior in complex geometries More realistic configurations than Saffire-
I, II, and III X

Flame behavior for planar and complex 
geometries in exploration atmospheres 

Elevated O2, lower P; compare with 
Saffire-I, II, III; supplement small-scale 
tests in CIR

X

Measure flame behavior over large-scale 
planar surfaces Continues Saffire-I and III investigations X X

Post-fire monitoring Demonstrate performance of prototype Orion 
and ISS CPM

Demonstration of prototype flight 
hardware X X

Obtain data to validate transport and detection 
models Required for model development X X

Demonstrate fire detection with multi-moment 
sensors

Demonstrate capability to reject 
nuisance alarms X

Evaluate performance of hybrid fire detection 
(smoke and gaseous products)

Combustion product detection by 
prototype combustion product monitor X

Post-fire monitoring Quantify rate of decay of gas species after a 
spacecraft fire Required for model development X X

Post-fire cleanup Quantify atmosphere cleanup rate with 
prototype smoke-eater Demo of prototype flight hardware X X

Fire Suppression Performance of low-momentum water mist 
suppression

Effectiveness of fire ports using water 
mist fire suppression X

Fire growth/dynamics

Fire Detection



BACKUP
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Summary of Spacecraft Fire Safety Needs
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Technical Area Tech Goal addressed Gap

Low- and partial-gravity 
Material Flammability

Accurate definition of the risk from material 
flammability in low-g (identify material flammability 
limits in low-g environment)

•  Quantification of risk from NASA-STD- 6001 Test 1 
   normal-g data
•  Growth rate of fire hazard

Fire Detection
Common fire detectors for exploration.  Early fire 
detection from structurally integrated distributed 
sensors

•  Particle size discrimination
•  Adaptation of state-of-art technology

Fire Suppression ECLS-compatible and re-chargeable fire 
extinguisher

•  Scaling to vehicle
•  Size of critical fire

Emergency Crew Mask Emergency breathing apparatus with filtering 
respirator

•  Flame resistant
•  One size fits all
•  Can be donned in 5 sec
•  Resists chemical breakthrough

Post-fire (combustion 
product) monitoring

Contingency air monitor for relevant chemical 
markers of post-fire cleanup

•  Measurement of CO, CO2, HF, HCl, HCN
•   Battery-operated
•  Hand-held
•  Calibration duration 1-5 years

Post-fire/leak Clean-up Contingency air purifier for post-fire and leak 
cleanup

•  Stand-alone
•  Low (integrated) power, low mass/volume

Fire Scenario Modeling 
and Analysis Definition of a realistic spacecraft fire to size  

•  Validated models of impact of a large scale fire on 
    the spacecraft volume and cabin conditions
•  Analysis to size fire suppression and cleanup 
   equipment based on vehicle parameters




