

Advanced Exploration Systems Program

Fire Detection Tradeoffs as a Function of Vehicle Parameters

46th International Conference on Environmental Systems

David L. Urban, Daniel L. Dietrich, John E. Brooker, Marit E. Meyer and Gary A. Ruff NASA John H. Glenn Research Center Cleveland, OH

July 13, 2016

- Since Skylab, NASA and other countries have included fire detection in all inhabited vehicles.
- The predominant technique has been smoke aerosol detectors
 - This is based on the understanding that aerosol production is a prompt, distinct, and rapid product of overheat and fire of virtually all materials
 - Species production has been seen to be less universal, and less distinct
- There is an increasing trend toward higher levels of air filtration.
 - Increases crew comfort
 - Also filters the smoke potentially delaying the alarm
- This work examines the interaction between the smoke detector and the air filtration system

System	Detector Performance Basis	Technology
Residential	Minimum Sensitivity 1.6 to 13.2 % obscuration/m plus required response to reference test fires	Light Scattering or Ionization
FAA Cargo Bay	Emphasis on sampling the cargo area and false alarm avoidance, typical range is up to 13.2 % obscuration/m	Predominantly Light Scattering
Space Shuttle	2 mg/m ³	Ionization
ISS	3.3 % obscuration/m	Light Scattering
Orion	Current concept is rate of rise detection (light scattering)	Light Scattering

 No clear precedent from ground-based or space systems. Each have been defined empirically with limited traceability to definable.

Smoke Detection Background: Destiny Smoke Detection Simulation-25% Soot: effect of gravity

Low-gravity

Normal-gravity

Destiny Simulation: 5%soot

Smokeview 5.0.0 Beta - May 23 2007

Frame: 2	
Time: 0.7	

Using NIST Fire Dynamics Simulator Detection times 118 and 206 s

Log-Normal Distribution

$$f_N(D) = \frac{N_t}{(2\pi)^{1/2} D \ln \sigma_g} \exp\left(-\frac{(\ln D - \ln D_g)^2}{2 \ln^2 \sigma_g}\right)$$

Number is dominated by the smaller particles Mass is dominated by the larger particles (tail)

Particle Counter device First moment device Third moment device * Scattering device 10.00 10.00 10.00 10.00 * 1.00 0.10 0.10 0.00 Count Median Diameter Normalized Number Concentration to alarm for each device type

Alarm level: 2 mg/m³ (500 nm CMD and a σ_g of 1.3)

22 x 10⁶ particles/cc

Normalized Mass Concentration at alarm for each device type

Smoke	Source	Geometric Mean Diameter (Dg) (µm)	Count Mean Diameter (M ₁ /M ₀) (µm)	Diameter of Average Mass (M ₃ /M ₀) (µm)	σ _g
Konton	Unaged	0.042	0.056	0.101	2.154
Kapton	Aged 720 s	0.089	0.109	0.161	1.872
Lomentials	Unaged	0.090	0.128	0.258	2.312
Lampwick	Aged 720 s 0.229		0.276	0.398	1.834
Silioono	Unaged	0.128	0.196	0.465	2.530
Silicone	Aged 720 s	0.269	0.355	0.619	2.108
Toflon	Unaged	0.081	0.101	0.170	2.198
renon	Aged 720 s	0.070	0.105	0.232	2.442
Duroll	Unaged	0.149	0.204	0.384	2.211
Fyreii	Aged 720 s	0.293	0.359	0.539	1.892

Species Production From Pyrolysis of Spacecraft Materials

	Mass of pyrolyzed	Species Concentration increase due to overheat event in a 10 m ³ vehicle (ppm)									
Material	reach alarm level smoke concentrations (g)	со	HF	HCN	HCI	CO ₂					
Kapton snips	6.7	256	0.4	5.7	0.4	263					
Bulk Teflon	53.7	104.	382	3.5	66.	2090					
Orange PVC wire	0.89	2.2	0.1	0.1	12.8	42.1					
Printed Circuit Board	2.25	9.0	0.1	0.0	0.6	44.6					
Components	0.65	3.4	0.0	0.0	0.0	10.6					
Lamp wick	1.34	24.3	0.1	0.1	0.1	26.3					
Nomex	1.32	47.8	0.2	0.5	0.2	170.0					
Pyrell	0.40	4.3	0.0	0.2	0.0	15.6					
Bulk Kapton	16.81	931	1.1	13.1	1.1	1420					
(ppm)		55	2.5	8	5	13,000					
24 Hr SMAC (ppm)		20	1	4	2	13,000					

Flow through system

- Air continually enters the system at one end and then is transported to the smoke detector at the other end e.g.
 - Space Shuttle avionics bays
 - Capsule with bulk air flow from one end to the other

Simple mixed volume

 System is largely closed with air being well circulated and the smoke detector at an arbitrary location (usually at an air intake)

- Closest example is the shuttle mid-deck

Mixed system with filtration

- System is largely closed with air being well circulated with particulate filtration on the air recirculation system.
 - Smoke detector is usually located at the intake to the air filtration system
 - ISS modules
 - Orion and other new vehicles

Analysis is simply based on the smoke production rate diluted in the forced air flow. Since there is no storage, detection depends on the smoke pulse being long and strong enough to trigger the detector

	Ma to trig	ss of p gger al	oyrolyz larm	zed ma	terial	Pl	PM incr	ease d Alarm	ue to fi	re at			
	Flow rate Ipm	Alarm level (mg/m³)	Vehicle volume (m3)	Lamp wick (g)	Bulk Kapton (g)	Bulk Teflon	Polyvinyl Chloride (PVC)	Nomex	CO (Bulk Kapton)	HF (Bulk Teflon)	HCN (Bulk Kapton)	HCI (PVC)	CO2 (Bulk Teflon)
Avionics Cooling duct STS Alarm level	9000	2	65.0	0.1	1.0	3.2	0.1	0.1	186	77	3	3	417
Avionics Cooling duct ISS Alarm level	9000	10	65.0	0.4	5.0	15.9	0.3	0.4	931	383	13	13	2087

- Due to the high flow rate, a significant amount of overheated material is required to trigger the alarm
- Despite the resulting high concentrations of hazardous species at alarm, the net concentraion in the spacecraft will not necessarily that large

$$\frac{d}{dt}X_{i,III} = \dot{n}_{i,III} + (1-\alpha_i)\frac{\dot{V}_{ECLSS}}{V_{III}}X_{i,II} - \frac{\dot{V}_{ECLSS}}{V_{III}}X_{i,III}$$

Net Change of Species in Volume 3 as a result of the fire

- Since the system is well mixed, the entire volume needs to be raised to the detection threshold
- This is facilitated by the fact that the smoke can accumulate in the volume
- However the air filtration system also removes smoke particulate from the system delaying the triggering of the alarm
- This delay enables hazardous species to accumulate if they are not also filtered

Mixed Systems

						Mass of material pyrolyzed				PPM increase due to fire at alarm					
	Vehicle Habitable Volume	Air Flow Rate	HEPA Filtration	Smoke Alarm setting	Pyrolysis Rate	Total Mass Cellulose Pyrolyzed to alarm	Mass Kapton pyrolyzed to alarm	Mass Teflon pyrolyzed to alarm	Mass Polyvinyl Chloride pyrolyzed to alarm	CO (Bulk Kapton)	HF (Bulk Teflon)	HCN (Bulk Kapton)	HCI (Polyvinyl Chloride)	CO ₂ (Bulk Teflon)	
	m ³	m³/h	%	mg/m 3	mg/s	g	g	g	g	ppm	ppm	ppm	ppm	ppm	
Destiny	53	1100	100	10	140. 5	7.9	98.4	314. 0	5.2	102 7	422	14	14	2304	
Space Shuttle	37	521	0	2	NA	1.0	12.4	39.7	0.7	186	76	3	3	417	
CEV / Commercia I Crew Capsules	6	500	100	10	28.1	0.9	11.8	37.7	0.6	108 9	448	15	15	2442	

ISS Destiny Module

ISS detection threshold ~ (10 mg/m³).

Total mass of smoke particulate at the alarm threshold for detection is 565 mg at 281mg/s and 586 mg at 140.5 mg/s.

Smoke production rate must exceed the filtration rate.

Mixed Systems

						Mass of material pyrolyzed				PPM increase due to fire at alarm					
	Vehicle Habitable Volume	Air Flow Rate	HEPA Filtration	Smoke Alarm setting	Pyrolysis Rate	Total Mass Cellulose Pyrolyzed to alarm	Mass Kapton pyrolyzed to alarm	Mass Teflon pyrolyzed to alarm	Mass Polyvinyl Chloride pyrolyzed to alarm	CO (Bulk Kapton)	HF (Bulk Teflon)	HCN (Bulk Kapton)	HCI (Polyvinyl Chloride)	CO ₂ (Bulk Teflon)	
	m ³	m³/h	%	mg/m 3	mg/s	g	g	g	g	ppm	ppm	ppm	ppm	ppm	
Destiny	53	1100	100	10	140. 5	7.9	98.4	314. 0	5.2	102 7	422	14	14	2304	
Space Shuttle	37	521	0	2	NA	1.0	12.4	39.7	0.7	186	76	3	3	417	
CEV / Commercial Crew Capsules	6	500	100	10	28.1	0.9	11.8	37.7	0.6	108 9	448	15	15	2442	

CEV detection threshold ~(10 mg/m³). The total mass of smoke particulate at the alarm threshold for detection is 55 mg at 140.5 mg/s and 70.3 mg at 28.1 mg

Smaller volume facilitates detection.

Mixed Systems

						Mass of material pyrolyzed			PPM increase due to fire at alarm					
	Vehicle Habitable Volume	Air Flow Rate	HEPA Filtration	Smoke Alarm setting	Pyrolysis Rate	Total Mass Cellulose Pyrolyzed to alarm	Mass Kapton pyrolyzed to alarm	Mass Teflon pyrolyzed to alarm	Mass Polyvinyl Chloride pyrolyzed to alarm	CO (Bulk Kapton)	HF (Bulk Teflon)	HCN (Bulk Kapton)	HCI (Polyvinyl Chloride)	CO ₂ (Bulk Teflon)
	m ³	m³/h	%	mg/m 3	mg/s	g	g	g	g	ppm	ppm	ppm	pp m	ppm
Destiny	53	1100	100	10	140. 5	7.9	98.4	314. 0	5.2	1027	422	14	14	2304
Space Shuttle	37	521	0	2	NA	1.0	12.4	39.7	0.7	186	76	3	3	417
CEV / Commercia I Crew Capsules	6	500	100	10	28.1	0.9	11.8	37.7	0.6	1089	448	15	15	2442

- Effectiveness of smoke detection is strongly affected by the vehicle ventilation system
- High flow rates can lead to large dilution rates in flow-through systems
- Air filtration competes with smoke production in mixed systems
- This can lead to:
 - Non-detection
 - Buildup of undesirable components that are not filtered.
- It may be possible to filter at a lower rate which enables crew comfort while still fostering rapid detection
- Spacecraft fire detection systems (measured parameter, locations, thresholds) should be designed in tandem with the air filtration system

