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Motivation

Effective spatial discretization is provided by Discontinuous
Galerkin (DG) or Flux Reconstruction (FR) methods.

Time discretization with such spatial methods results in

1) either a small time step size in the case of an explicit time
stepping, e.g., Runge-Kutta (Cockburn and Shu 1989,...)

2) or a large system of equations in the case of an implicit time
stepping such as space-time DG (Johnson and Pitkaranta
1986, Hughes and Hulbert 1988, Bar-Yoseph and Elata
1990, Van der Vegt and Van der Ven 2001, ...)

Efforts to improve time stepping has had limited success
(staggered-mesh scheme, Warburton and Hagstrom 2008;
singly diagonal implicit RK scheme, Vermeire et al. 2013, ...)

Time stepping is one of the pacing items mentioned by the
committee of the International Workshop on High-order CFD
methods (2011, 2013, 2014, 2016).



Outline

Review of first-order (piecewise constant) methods
Extensions to arbitrary order

o Finite volume: Van Leer’s MUSCL approach
(piecewise linear case, scheme 111, 1977), explicit
method

o Space-time finite element method: Johnson and J.
Pitkdranta 1986, “An analysis of the discontinuous
Galerkin method for a scalar hyperbolic equation”,
explicit and implicit methods

Current efforts in extending to systems of equations and
multi-dimensions

Conclusions



Advection Equation

u+au, =0, a=0
Initial condition: at t =0, u(Xx)=ugy(X)
Exactsolution: u(x,t) =uy(x—at)
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Exact Solution for Advection Equation




Advection Equation

u+au, =0, a=0

The data at time t" are known.

Wish to calculate the solutions at time t"*
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First-Order Upwind Explicit Method

u, +au, =0, a=0

Finite difference: Discretize at ( J, n) using backward difference
In space and forward difference in time
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Finite Volume Approach

The data u? represents the average value of u in the cell
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First-order upwind method for advection:
shift operator and projection
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High-Order Extension Using
Legendre Polynomials
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By orthgonalizing the basis ¥, k =0,1,2, ..., via Gram - Schmidt process,
we obtain the Legendre polynomials
Ly =1 L =2& L, =6£2-1/2,...
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Projection using Legendre Polynomials
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On | =[-1/2,1/2], approximate u by Zfzouj,k L, where
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Van Leer’s Scheme III Employing Shift and Projection
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Van Leer’s Scheme III (1977)
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Extension to Arbitrary Order (Below, Cubic)
Employing Shift and Projection
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Fourier Stability and Accuracy Analysis

u+au, =0, a=0
Initial condition : ug(x) =e'"*

Exact solution: u(x,t) =g'"VX7at) — gmIwatgiwx

To analyze numerical methods, assume Ax =1, x; = J,
WX

Uo(Xj)=eI j

For timestep At, with o = aAt/ Ax, the exact solution is
u(xj,At) = R

A numerical method approximates g 1 Wo by its

amplification factors (eigenvalues). Note that

‘e—IWG‘ _1
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Fourier Analysis: Plots of Absolute Values of Eigenvalues
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Fourier Analysis:

Plots of Absolute Values of Eigenvalues
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Van Leer’s scheme 3 (1977)

 Derived for advection equation

 Uses projection via Legendre polynomials
(similar to DG)

 Plecewise linear method (p = 1) Is third-order
accurate; piecewise parabolic (p = 2), fifth-
order. Degree p method Is accurate to order
2p + 1

» CFL condition is 1 as opposed to ~1/(p + 1)?
for explicit RK-DG.
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Difficulty

Concerning the extension of scheme 111, Van Leer
wrote (AIAA, Van Leer and Nomura 2005):

“When trying to extend these schemes beyond
advection, viz., to a nonlinear hyperbolic system like
the Euler equations, the first author ran into
Insuperable difficulties because the exact shift
operator no longer applies, ...”
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Extension to Systems via Space-Time Method

tn+1

The data at time t" are known for all spatial cells
(polynomials of degree k). Wish to calculate the solution

on each space - time cell K™ = [X;_y/5, Xj,q/2]1%[t",t"™].

The solution we want is that at t™*.




Space-Time Method

Right Radau quadrature points in time.

Linear case
t n"‘l i e



Space-Time Method

Right Radau quadrature points in time.
Quadratic case

tn+1
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Moment Scheme

Solve u, + f, =0.

On spatial cell E, require jE (u+ f,) ¢ dx = 0.

Integrate by parts
a Xj+1/2 .
- Jcuddx [fupw¢]xj_1/2 - _[E fgydx = 0.

Here, fpw (Xj_1/2) and fy, (Xjia/2) areupwind fluxes.

Integratein time from t" to t~
jEu(x,t*)¢ (X) dx—jEu(x,t“)¢ (X) dx

[ Tl at= [ fg,0xct = 0
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Moment Scheme

IE u(x,t) ¢ (x)dx =

[Lu(xt") ¢ (x)dx

- fn* [fup 7 dt + j: | f @, dxdt

T

Surface Integral

T

Volume Integral



Moment Scheme
Time Integration using right Radau points

t
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Denote the data at purple dots by u (r 1/3) and u (r 1)

We need quadratures for timeintegral from t" to t™
l.e., with 7 on[0,1], integral from O to c, isgiven by,
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Cauchy-Kowalewsky Procedure for Polynomial Data
(No Interaction Among Cells)

With uj, (uy)], ~

(Uy) ], - known,

1. Obtain mixed

derivatives

Uy =—au, ,

Uyi = —AUyy ...

via a Cauchy -

Kowalewsky procedure

(Harten Engquist, Osher,

and Chakravarthy,1987)

2. Or use Runge - Kutta

with no upwinding. ~/
We need to allow the data among cells to interact




27

Obtain Surface Fluxes at Radau Time Levels

At each interface, for each Radau time level,
with u; and ug known via, e.g., a C-K procedure,
the flux is evaluated by upwinding (Riemann solver)

A

v




Update cell average values at red dots

v

j J+l/2u(x t )I—k dx = j:j+l/2U(X,tn) I—k dx —

Xj-1/2 j-1/2

Xj+1/2 j+1/2
28 I [fUpWLk]X _1/2 at +I J-J 1/2(f)(|-k)x dx dt
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Algorithm for Moment Scheme

The piecewise polynomial data are given at time n.

= First, on each cell, obtain the space-time Taylor series
expansion with no interaction (via Cauchy-Kovalevsky or
RK)

= At each interface, for each Radau intermediate time level,
get the left and right u values, and then the upwind fluxes.

n,l n,l n,l

= Successively calculate Ui'g, Uiy, Uy, oo



Moment Scheme (1D)

 For 1D convection with a constant speed, the
moment scheme yields a result identical that via
Van Leer’s approach (accurate to order 2p + 1).

» For a vanishingly small time step, the moment
scheme reduces to RK-DG.

» The moment scheme extends to systems of
equations with relative ease.
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Moment Scheme on a Rectangular Mesh:
Interacts with the four immediate neighbors

But does NOT
Involve corner
neighbors
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2D Fourier Analysis for Moment Scheme:
Stability Regions

Y Y
/1
0.5 ojs ’\
/ N
_-o"""“’ l‘“‘“\
- 0.5 0.5 0 1O, 0.3 0510
AN /
NAT N
— 1 — £ \f
y P
0.9 0.5
AN
AN NN VARN
-1 05N | 0 0 -1 03N | /05 0"
\(
R 0.5 1 0.5
| S i |J =




33

2D Fourier Analysis for Moment Scheme:
Stability Regions, Tensor Products
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Space-Time DG (Implicit) Method

0 0
On the (x,t) plane, set V:(&,aj, (u,¢)=jKu¢dxdt,
p=@1l), uz=pBVu=au,+u.

Wish tosolve u,; = 0. Using integration by parts,

(Up#)=] _u¢ npds—(uds)=0
Ondomain K, find u, of degree p such that for any ¢ of degree p,

IaE_uinflow ¢ n.pds + I8E+ up ¢ n.Bds + (u,,45)=0.

t n+1 —
Characteristic
n+1
K]
i n X




Space-Time DG (Implicit) Method
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Space-Time DG (Implicit) Method

" Cubic Solution

o=1



Space-Time Finite Element Method

oK
oK _
tt
Inflow
X
% Outward unit

normal n

I@K_ Uinflow ¢ 1.4 0S + -[9K+uh pnpds + (u,,4z)=0.
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Space-Time Finite Element Explicit Method
for Advection
Johnson and Pitkaranta 1986.
Assume that0 < o < 1.
Triangulate each space-time cell by the diagonal from SW to NE.
The solution is 1identical to that of Van Leer’s method (FV=FE).

Moment scheme provides extension for this explicit scheme to systems.

A

A C

Cell j-1 Cell j



Moment Scheme and STDG

« STDG Is not as accurate as the moment scheme, but
IS stable for arbitrary time step size.

 The solution expression for both method are the
same except that the fluxes for the moment scheme
are calculated explicitly from the data whereas those
for STDG are implicit from the solutions.

* Van the moment scheme be employed in some
Iterative manner to obtain the solution of STDG
without solving a large system of equations?
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Oblique shock

(p,u,v, p) =(1.7,2.62,-.51,1.53)




Pressure

Linear |
Moment
Scheme

Upwind
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Conclusions

A new idea for time stepping taking into account the
physics of advection was presented. The method is an
explicit time stepping with a CFL number of 1 in 1D.

Moment schemes are (super) accurate to order 2p+1.

The implicit method is a simplified and optimal DG
scheme applied to time. It employs the right Radau points.

The explicit and implicit methods use the same
Intermediate time levels, and the former can serve as an
Iterative procedure to update the solution of the latter.

Preliminary numerical results were shown.

Further research on both type of time-stepping methods is
needed.



Thank you
for your attention.



