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Motivation
 Effective spatial discretization is provided by Discontinuous 

Galerkin (DG) or Flux Reconstruction (FR) methods.

 Time discretization with such spatial methods results in 

1) either a small time step size in the case of an explicit time 
stepping, e.g., Runge-Kutta (Cockburn and Shu 1989,…)

2) or a large system of equations in the case of an implicit time 
stepping such as space-time DG (Johnson and Pitkäranta
1986, Hughes and Hulbert 1988, Bar-Yoseph and Elata
1990, Van der Vegt and Van der Ven 2001, …)

 Efforts to improve time stepping has had limited success 
(staggered-mesh scheme, Warburton and Hagstrom 2008;
singly diagonal implicit RK scheme, Vermeire et al. 2013, …)

 Time stepping is one of the pacing items mentioned by the 
committee of the International Workshop on High-order CFD 
methods (2011, 2013, 2014, 2016).
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Outline

 Review of first-order (piecewise constant) methods

 Extensions to arbitrary order

o Finite volume: Van Leer’s MUSCL approach 

(piecewise linear case, scheme III, 1977), explicit 

method

o Space-time finite element method: Johnson and J. 

Pitkäranta 1986, “An analysis of the discontinuous 

Galerkin method for a scalar hyperbolic equation”, 

explicit and implicit methods

 Current efforts in extending to systems of equations and 

multi-dimensions

 Conclusions
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Advection Equation
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Exact Solution for Advection Equation
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Advection Equation
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First-Order Upwind Explicit Method
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Finite Volume Approach
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First-order upwind method for advection:

shift operator and projection
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j  Cell j  Cell

(a) Data (b) First-order solution (red)
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Projection using Legendre Polynomials
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Van Leer’s Scheme III Employing Shift and Projection
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Van Leer’s Scheme III (1977)
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Extension to Arbitrary Order (Below, Cubic)

Employing Shift and Projection
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Fourier Stability and Accuracy Analysis
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Fourier Analysis: Plots of Absolute Values of Eigenvalues

p = 1

p = 2
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p = 3

Fourier Analysis: Plots of Absolute Values of Eigenvalues



Van Leer’s scheme 3 (1977)

• Derived for advection equation

• Uses projection via Legendre polynomials 

(similar to DG)

• Piecewise linear method (𝑝 = 1) is third-order 

accurate; piecewise parabolic (𝑝 = 2), fifth-

order. Degree 𝑝 method is accurate to order 

2𝑝 + 1

• CFL condition is 1 as opposed to ~1/ 𝑝 + 1 2

for explicit RK-DG.
18
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Difficulty

Concerning the extension of scheme III, Van Leer 

wrote (AIAA, Van Leer and Nomura 2005):

“When trying to extend these schemes beyond 

advection, viz., to a nonlinear hyperbolic system like 

the Euler equations, the first author ran into 

insuperable difficulties because the exact shift 

operator no longer applies, ...”
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Extension to Systems via Space-Time Method
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Space-Time Method
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 

Integral VolumeIntegral Surface
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Moment Scheme 

Time integration using right Radau points 
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Cauchy-Kowalewsky Procedure for Polynomial Data 

(No Interaction Among Cells)
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Obtain Surface Fluxes at Radau Time Levels
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Update cell average values at red dots
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Algorithm for Moment Scheme
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The piecewise polynomial data are given at time  n.

 First, on each cell, obtain the space-time Taylor series 
expansion with no interaction (via Cauchy-Kovalevsky or 
RK)

 At each interface,  for each Radau intermediate time level, 
get the left and right u values, and then the upwind fluxes.

 Successively calculate  ...,,, ,
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Moment Scheme (1D)

• For 1D convection with a constant speed, the 

moment scheme yields a result identical that via 

Van Leer’s approach (accurate to order 2𝑝 + 1).

• For a vanishingly small time step, the moment 

scheme reduces to RK-DG.

• The moment scheme extends to systems of 

equations with relative ease. 
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Moment Scheme on a Rectangular Mesh:

Interacts with the four immediate neighbors 
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2D Fourier Analysis for Moment Scheme: 

Stability Regions
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2D Fourier Analysis for Moment Scheme: 

Stability Regions, Tensor Products
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Space-Time DG (Implicit) Method
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Space-Time DG (Implicit) Method
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Space-Time DG (Implicit) Method
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Space-Time Finite Element Method
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• Johnson and Pitkäranta 1986.   

• Assume that 0 ≤ 𝜎 ≤ 1. 

• Triangulate each space-time cell by the diagonal from SW to NE.

• The solution is identical to that of Van Leer’s method (FV=FE).

• Moment scheme provides extension for this explicit scheme to systems. 
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n
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Space-Time Finite Element Explicit Method

for Advection
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Moment Scheme and STDG

• STDG is not as accurate as the moment scheme, but 
is stable for arbitrary time step size.

• The solution expression for both method are the 
same except that the fluxes for the moment scheme 
are calculated explicitly from the data whereas those 
for STDG are implicit from the solutions.

• Van the moment scheme be employed in some 
iterative manner to obtain the solution of STDG 
without solving a large system of equations?
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Oblique shock
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Conclusions

• A new idea for time stepping taking into account the 
physics of advection was presented. The method is an 
explicit time stepping with a CFL number of 1 in 1D. 

• Moment schemes are (super) accurate to order  2p+1.

• The implicit method is a simplified and optimal DG 
scheme applied to time. It employs the right Radau points. 

• The explicit and implicit methods use the same 
intermediate time levels, and the former can serve as an 
iterative procedure to update the solution of the latter.

• Preliminary numerical results were shown.

• Further research on both type of time-stepping methods is 
needed.
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Thank you 

for your attention.


