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Abstract 
Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations 

of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. 
Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip 
boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was 
developed to generate a converged flow field in TURBO. This procedure initialized computations on a 
coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of 
systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally 
overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as 
compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the 
TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match 
with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner 
separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are 
somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 psi 
(101.35 kPa) down to 11.0 psi (75.83 kPa), the inlet pressure of the component test. Off-design tip 
clearance was modeled in TURBO in two computations: one in which the blade tip geometry was 
trimmed by 12 mil (0.3048 mm), and another in which the hub flow path was moved to reflect a 12-mil 
axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two 
computations indicate nonnegligible differences between the two modeling approaches. 

Introduction 
The High Efficiency Centrifugal Compressor (HECC) is a state-of-the-art centrifugal compressor 

stage designed and fabricated under a NASA Research Announcement cost-share contract in 
collaboration with United Technologies Research Center (UTRC). At the time of this writing, component 
testing of the HECC is underway at the NASA Glenn Research Center, and an in-house computational 
fluid dynamics (CFD) effort using the three-dimensional unsteady Reynolds-averaged Navier-Stokes 
(RANS) solver, TURBO Parallel Version 4, is ongoing. The motivation behind this numerical study is to 
demonstrate a capability to simulate the complex flows inherent to centrifugal compressors, giving insight 
into the details of the flow field to support the experiment. The goals of this technical memorandum are to 
document the methodology and the modeling choices made in this CFD effort thus far and to present the 
results of the initial simulations as compared with existing published results of design-intent simulations 
(Ref. 1). These design-intent simulations were previously generated with the commercial turbomachinery 
solver Code Leo (AeroDynamic Solutions). 
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Figure 1.—Computational model of High Efficiency Centrifugal Compressor (HECC). 

 
The HECC stage consists of an impeller, a vaned diffuser, and exit guide vanes (EGVs). The impeller 

features 15 pairs of main blades and splitter blades with spanwise varying backsweep, lean, and elliptical 
leading and trailing edges. The diffuser consists of 20 pairs of main vanes and splitter vanes. The EGV 
row consists of 60 cascade-style airfoils near the axial exit of the stage. A computational model of the 
HECC stage is depicted in Figure 1. The design point is at 21,789 rpm with an overall total pressure ratio 
of 5.0 and an exit corrected flow rate of 3.0 lb/s (1.36 kg/s). Further information on design requirements 
and design strategy is detailed in Reference 1. 

The solver selected for in-house CFD simulations is TURBO, an unsteady, viscous, three-
dimensional RANS solver designed for axial turbomachines. It employs the two-equation k-ε turbulence 
model with wall functions developed by the Center for Modeling of Turbulence and Transition (CMOTT) 
(Ref. 2). The code includes a phase-lag periodic boundary condition to model the unsteady flow from 
neighboring blade rows in relative motion. This allows for computation of a single blade passage rather 
than sector periodic or full annulus simulations, which are computationally expensive. Further 
information regarding the TURBO algorithm is detailed in Reference 3. 

In the current effort, changes were made to the TURBO Parallel Version 4 source code to allow for 
proper modeling of centrifugal compressors. The details of these source code modifications are offered 
herein. A customized output, similar to the Plot3D format (Ref. 4), was created, and a reader for this 
format was written for the visualization application ParaView (Ref. 5). Various turbomachinery-related 
filters and scripts were also written for ParaView to aid in postprocessing. Preprocessing and meshing 
were done using the Turbomachinery Gridding System (TGS). Modeling choices made in TURBO are 
discussed herein, and a startup procedure that can serve as a template to produce a converged simulation 
when starting from scratch is detailed. Finally, some initial results from TURBO are presented alongside 
the existing design-intent simulations from Code Leo. 
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Computational Methodology 
Changes to TURBO 

The TURBO code was designed with axial turbomachines in mind, so changes to certain subroutines 
were required in order to simulate a centrifugal machine. In rotor passages, TURBO requires a user-
specified start coordinate and end coordinate to define the region of hub rotation. In the TURBO source 
code, these coordinates are assumed to be axial coordinates. In the case of the HECC, the start coordinate 
is at a constant axial location somewhere upstream of the impeller leading edge, and this assumption is 
valid. However, the end coordinate is along a constant radius downstream of the impeller trailing edge, 
and the assumption is invalid. In light of this, a radial end coordinate was supplied in the TURBO input 
file in place of the axial end coordinate. A source code change was then implemented in the no-slip 
boundary condition subroutines of the solver. The files bc.noslip.f, bc2.noslip.f, and bfull.f are associated 
with these subroutines. Specifically, these subroutines contain checks against the variable xend_hc, which 
stores the end coordinate of the region of hub rotation. These checks must be modified so that the variable 
for the axial coordinate, x, is replaced with a newly defined variable for a radial coordinate, r, as shown in 
the following sample code from bc.noslip.f. 

 

Original Source Code 
       if(x(i,jav,k) >  xst_hc(jj,nbr).and. 
     &    x(i,jav,k) < xend_hc(jj,nbr)) then 

Modified Source Code 
       r = sqrt(y(i,jav,k)*y(i,jav,k) + z(i,jav,k)*z(i,jav,k)) 
       if(x(i,jav,k) > xst_hc(jj,nbr).and. 
     &    r < xend_hc(jj,nbr)) then 

 

A separate change to the TURBO source code was made to write out a custom output file. This 
custom output file contains flow information similar to the Plot3D format (i.e., pressure, density, 
momentum, and stagnation energy) but additionally includes values of y+ and the turbulence quantities k 
(turbulent kinetic energy), ε (dissipation), and eddy viscosity. A file reader to load this new format was 
written for ParaView, the postprocessing tool used in the current work. This file reader is also able to 
compute additional quantities, such as total pressure, total temperature, static temperature, Mach number, 
and relative velocity vectors. Additional details on postprocessing tools used in the current work are 
included in Appendix A.  

Modeling Choices 

The two-equation CMOTT k-ε turbulence model was used in the current work. This is the only 
turbulence model available in TURBO Parallel Version 4. The model applies wall functions when values 
of y+ are greater than 10.5 and integrates to the wall for lower values of y+. An inlet turbulence intensity 
of 1 percent and an inlet turbulent eddy viscosity ratio of 100 were assumed. These are the default values 
in TURBO; it is recommended that these values be updated as inlet data becomes available in order to 
better model the component test. A grid utilizing wall functions (y+ > 10.5) was generated using TGS. 
The grid consists of a 35-block topology with a single impeller and single diffuser passage (with 
splitters), and 3 EGV passages. The impeller tip clearance grid includes 18 spanwise points and is set to 
the design clearance of 12 mil (0.3048 mm) constant along the chord. The ratio of clearance to impeller 
blade exit height is 1.97. The grid has 85 points from hub to shroud, and the total number of grid points is 
approximately 9 million. The 35-block base topology is depicted in Figure 2. Computational efficiency 
was increased by balancing the total number of grid points per block, so these 35 base blocks were further 
subdivided into 61 total blocks with TGS before the computations were initiated. Further information on 
block decomposition is detailed in Appendix B. 
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Figure 2.—High Efficiency Centrifugal Compressor (HECC) base mesh topology. 

The inlet boundary condition in TURBO is a user-prescribed spanwise profile of total pressure, total 
temperature, radial flow angle, and tangential flow angle. The tangential flow angle was set to zero. The 
near-hub and near-casing radial flow angles were taken as the approximate slopes of the hub and casing 
flow paths, and the spanwise profile of radial flow angle was then found by linear interpolation between 
these two values. The total temperature profile was set to approximately 518.4 °R (288 K) along the span. 
The total pressure profile was set to approximately 1 atmosphere at midspan, with approximately 
10 percent boundary layer thickness at the hub and 15 percent boundary layer thickness at the casing. 
These total pressure and total temperature profiles are the default profiles found in the input file 
distributed with TURBO Parallel Version 4. It is suggested that these profiles be updated as inlet data 
becomes available in order to better model the component test. 

The phase-lag periodic boundary condition (Ref. 6) was used to reduce the computational size of the 
simulation. In this mode of analysis, a single impeller and a single diffuser passage are modeled, with a 
sliding interface between them. A time history of the flow is stored, which supplies the boundary 
conditions for subsequent time steps. The diffuser main vane and splitter vane, along with three EGV 
passages, are modeled together in the stationary frame of reference. The solver was run in this time-
accurate mode, where 3,000 iterations comprised one full wheel revolution. A row of three struts 
upstream of the impeller was not included in the simulation, as it was believed to have negligible 
aerodynamic impact upon the downstream flow field. Any leakages into or out of the flow path were 
thought to be negligible and were not modeled. 
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Startup Procedure 

The TURBO simulation was initialized on a coarsened grid obtained from TGS. The coarsened grid 
halved the grid points of the baseline grid in each direction, resulting in a 1.1 million point grid. Working 
with this coarse grid allowed for faster computation and reduced wall clock run times when initializing 
the flow field. The TURBO input file (input00) was set up to initialize the flow field with uniform flow 
(initialize_solution = 1) (Ref. 7). The exit boundary condition was set to the characteristic variable 
supersonic outflow (exit_bc_type = 4). Temporal accuracy was set to first order and spatial accuracy was 
set to second order. The wheel speed was set to 2,000 rpm. The solver was run in this manner for the first 
100 iterations. 

After 100 iterations, spatial accuracy was increased to third order and temporal accuracy was 
increased to second order. The exit boundary condition was changed to characteristic variable subsonic 
outflow with radial equilibrium via user-specified pressure imposed at the casing (exit_bc_type = –1). 
This casing pressure was set to 14.8 psi (102 kPa). The simulation was run with these settings for 900 
iterations. The wheel speed and backpressure were gradually increased according to the schedule in 
Table I until the design speed of 21,789 rpm was reached. The mass flow rate convergence history 
associated with these increases in wheel speed and backpressure is shown in Figure 3. 

 
TABLE I.—TURBO INITIALIZATION PROCEDURE ON COARSE GRID

Iteration number Wheel speed, 
rpm 

Backpressure, 
Pa 

101 to 1,000 2,000 102,000 

1,001 to 1,900 5,000 102,000 

1,901 to 3,000 8,000 102,000 

3,001 to 4,100 10,000 102,000 

4,101 to 5,000 12,000 102,000 

5,001 to 6,000 12,000 112,000 

6,001 to 7,000 12,000 122,000 

7,001 to 8,000 12,000 132,000 
 

Iteration number Wheel speed, 
rpm 

Backpressure, 
Pa 

8,001 to 9,000 12,000 142,000 

  9,001 to 10,000 12,000 152,000 

10,001 to 11,000 15,252 152,000 

11,001 to 12,000 18,521 152,000 

12,001 to 13,000 19,610 152,000 

13,001 to 14,000 20,700 152,000 

14,001 to 15,000 21,789 152,000 

 
Figure 3.—Convergence history of startup on coarse mesh. Arrows with solid lines mark 

changes in wheel speed; arrows with dashed lines mark changes in backpressure. 
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After reaching design speed at a backpressure of 22.05 psi (152 kPa), the flow field of the coarse 
simulation was interpolated onto the baseline grid. While holding speed constant, the backpressure for 
this baseline simulation was incrementally increased, allowing the simulation to converge after each 
increase. The criteria for convergence were inlet and exit physical flow rates equal to within 0.5 percent 
and negligible change in overall total pressure ratio and adiabatic efficiency over one full revolution. 

Computational Results 
All TURBO results shown in the current work are converged, time-accurate, phase-lag simulations 

that have been time-averaged over either one or two revolutions. These time-averaged flow fields are a 
standard output from TURBO and are loaded into the ParaView visualization software for postprocessing. 
The TURBO output file contains time-averaged pressure, density, Cartesian momentum vectors, and 
stagnation energy, from which additional flow quantities, such as total pressure and total temperature, are 
computed in ParaView. Total pressures and total temperatures were computed at inlet and exit rating 
stations and then mass averaged. The inlet rating station is downstream of inlet struts (not modeled) and is 
4.93 in. (12.52 cm) upstream of the impeller leading edge. The exit rating station is 0.9 in. (2.29 cm) 
downstream of the EGV trailing edge. Adiabatic efficiency was computed assuming a heat capacity ratio 
of 1.395. 

Baseline Results 

A speed line at 100 percent of design speed was generated on the baseline grid, which consisted of 
about 9 million points. This computation was not taken to numerical stall. Figure 4 shows TURBO 
unsteady phase-lag results compared with the steady (mixing plane) and unsteady (sector periodic) 
design-intent Code Leo results from Reference 1. 

The baseline TURBO computation overpredicts the choking flow rate by 0.75 percent as compared 
with the Code Leo unsteady computation. In general, the TURBO computation overpredicts pressure ratio 
compared with the Code Leo results. 
 

 
Figure 4.—Computed design speed performance of High Efficiency 

Centrifugal Compressor (HECC). (a) Pressure ratio. (b) Efficiency. 
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Effect of Diffuser Vane Fillets 

The baseline grid did not include fillets in the geometry definition. Because this compressor chokes in 
the diffuser and the diffuser fillet area was estimated to be 1.0 to 1.5 percent of the annulus area, a new 
TURBO grid that included the diffuser vane fillets was generated. It was thought that the differing area 
might be large enough to impact the choking flow rate. The resulting speed line of the TURBO 
computation with diffuser vane fillets is shown in Figure 5. This computation was run to near the 
numerical stall boundary. 

The inclusion of diffuser fillets led to a 0.6 percent reduction in the choking flow rate of the compressor. 
The TURBO computation with fillets was within 0.15 percent of the choking flow rate of the design-
intent Code Leo computation. In general, the inclusion of fillets brought the shape of the TURBO speed 
line closer to the Code Leo speed line. However, TURBO generally overpredicted performance as 
compared with Code Leo. It was hypothesized that the inclusion of fillets would have a larger impact on 
the choking flow rate. The relatively small reduction in the choking flow rate may be explained by 
examining a cross-flow plane near the diffuser throat at a choked operating point, as shown in Figure 6. 

The baseline case without fillets (Fig. 6(a)) shows regions of negative radial velocity (i.e., separated 
flow) in the corner of the pressure side of the main diffuser vane and the hub, as well as in the corner of 
the suction side of the main vane and the casing. These regions of aerodynamic blockage reduce the 
effective flow area. After regridding to include fillets (Fig. 6(b)), the pressure-side separation is reduced 
and the suction-side separation is gone. The inclusion of diffuser vane splitters reduced annulus area but 
also reduced the aerodynamic blockage caused by these regions of separation. In the baseline case, this 
separation may have been caused by the sharp corners. These sharp corners were rounded out with the 
inclusion of fillets, eliminating the flow separation. The computation with fillets more closely matched 
the design-intent CFD, so the grid with diffuser fillets was used for subsequent computations. 
 
 

 
Figure 5.—Computed design speed performance of High Efficiency 

Centrifugal Compressor (HECC) with and without diffuser fillets. 
(a) Pressure ratio. (b) Efficiency. 
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Figure 6.—Cross-flow plane of radial velocity near diffuser 

throat at choked operating point. (a) Baseline case without 
fillets. (b) After regridding to include fillets. 
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Suppressed Inlet Total Pressure 

The component testing of HECC is done with inlet total pressure suppressed below its ambient value; 
during typical operation, inlet total pressure is 10.5 to 11.0 psi (72.4 to 75.8 kPa). In an effort to better 
model the component test, a TURBO computation at design speed was generated with inlet total pressure 
suppressed to 11.0 psi, down from the previous value of 14.7 psi (101.35 kPa). The resulting speed line, 
which was not run to the stall point, is shown in Figure 7. 

A comparison of these speed lines indicates that the reduction in inlet total pressure had a negligible 
impact on both the choking flow rate (less than 0.1 percent change) and the overall performance in the 
TURBO simulations. This indicates that the modeling choices made in the current effort yield simulations 
that are relatively insensitive to this magnitude of change in inlet Reynolds number. 

Modeling Tip Clearance 

A goal of the component test is to collect tip clearance sensitivity data. To support this goal, it is 
necessary to properly model varying tip clearance in the CFD simulations. The impeller was designed for 
12-mil (0.3048-mm) constant clearance along the chord. In the test rig, tip clearance is controlled by 
shifting the impeller hub in the axial direction. Inherently, this will create a step in the flow path between 
the impeller hub and the diffuser hub, downstream of the impeller trailing edge. For example, increasing 
the trailing edge tip clearance from 12 mil (0.3048 mm) to 24 mil (0.6096 mm) will create a 12-mil step 
in the vaneless space between impeller trailing edge and diffuser main vane leading edge. A 
computational effort to model this off-design tip clearance was undertaken. In one computation, the 
trailing edge tip clearance was increased to 24 mil by shifting the impeller hub, as in the test cell. This 
formed a 12-mil step in the flow path, as shown in Figure 8. 

In a second computation, the tip clearance of the entire blade was increased to 24 mil by holding the 
hub and shroud flow paths constant but trimming the impeller blade tips. Figure 9 compares the results of 
these two computations with the design-intent tip clearance computation. 

 

 
Figure 7.—Computed design speed performance of High Efficiency 

Centrifugal Compressor (HECC) with suppressed inlet total 
pressure. (a) Pressure ratio. (b) Efficiency. 



NASA/TM—2017-219418 10 

 
Figure 8.—Step at hub formed by increasing tip clearance at impeller 

trailing edge. 
 

 
Figure 9.—High Efficiency Centrifugal Compressor (HECC) design-intent 

tip clearance (12 mil) result compared with 24-mil tip clearance cases. 
(a) Pressure ratio. (b) Efficiency. 
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Shifting the impeller hub in order to double the impeller trailing edge clearance resulted in a 
0.5 percent reduction in the choking flow rate in the case where the hub was shifted, and a 1.3 percent 
reduction in the choking flow rate in the case where the blade tip was trimmed. These figures indicate that 
there are nonnegligible differences in the two ways of modeling the increased tip clearance gap. The 
complication of regridding the geometry to include the hub step may be necessary to properly model the 
component rig when simulating off-design tip clearances. 

Conclusions and Recommendations 
Preliminary design speed computational fluid dynamics (CFD) computations of the High Efficiency 

Centrifugal Compressor (HECC) stage were generated using the TURBO solver. With the modeling 
choices made in the present work, the results generally overpredicted the choking flow rate, total pressure 
ratio, and adiabatic efficiency, as compared with the design-intent CFD results from Code Leo. Inclusion 
of the diffuser fillet geometry resulted in a reduction of 0.6 percent in the choking flow rate and a better 
match to design-intent CFD. The current TURBO result was computed with inlet total pressure at the 
default level of 14.7 psi (101.35 kPa) as well as at 11 psi (75.8 kPa), the level that more closely matched 
the component test. One-dimensional performance metrics indicated that these TURBO results were 
insensitive to this difference in inlet total pressure. An off-design tip clearance study was performed with 
two different computations: one in which the blade tip geometry was trimmed 12 mil (0.3048 mm), and 
another in which the impeller hub was shifted axially 12 mil (as is done in the component test rig). These 
two computations differed in choking flow rate by 0.8 percent, indicating that these modeling approaches 
produce dissimilar flow fields. 

For future iterations of these TURBO computations, the authors recommend that inlet boundary 
conditions be modified as needed to better match the conditions seen in the component testing of the 
HECC. These inlet boundary conditions include turbulence intensity and spanwise profiles of total 
pressure, total temperature, and radial and tangential flow angle. 
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Appendix A.—Interpolating, Integrating, and Averaging TURBO Results 
Using ParaView 

ParaView (Ref. 5) is an open source program for scientific visualization that has been implemented as 
an important tool for postprocessing TURBO results. ParaView has been shown to be useful for studying 
high-resolution three-dimensional data. A custom reader has been implemented, allowing easy access to 
turbomachinery quantities. From the user interface, it is very easy to generate typical graphics such as 
contours, stream lines, and vector plots. At a slightly deeper level, ParaView offers tools for data 
interpolation, integration, and averaging. Given herein are examples of using python scripts to generate 
one- and two-dimensional data from the three-dimensional TURBO flow field. 

Several excellent tutorials for interactive sessions are included with the ParaView distribution. 
Documentation for python scripting is less readily available, but there is a wide user base and much 
information on the Internet. It is also possible to create a python script using ParaView’s trace function, 
which generates a python script that duplicates the interactive session. This is often the starting point for 
building more powerful scripts that can be executed as batch scripts using the pvpython interpreter that 
binds ParaView functionality into the standard python converter. The example presented here is a script 
for producing circumferentially mass-averaged profiles of total pressure, static pressure, total temperature, 
and flow angle at the centrifugal compressor’s exit rating plane, which is defined by a constant radius. 
The result of this script is shown in Figure 10. The averaging computations were performed using 
functionality in ParaView, and the line plots were generated using Matplotlib (Ref. 8), a standard plotting 
library for python. 

The complete script for producing this plot follows here; comments are included for clarity. The 
techniques used in this script can be adapted to provide a wide variety of postprocessing tools for 
studying high-resolution three-dimensional data. The goal is to maintain a library of useful procedures for 
studying turbomachinery-related datasets. 

 

 
Figure 10.—Mass-averaged profiles produced by pvpython script for a centrifugal compressor. Profiles at radius 

ratio 0.31541 averaged along 100 spanwise locations.  
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Python Script to Produce Circumferentially Mass-Averaged Spanwise Profiles at 
Centrifugal Compressor Exit 

Python Code 
# 
#  input definitions for this run 
# 
radius = 0.31541 
gfile = '/media/Data1/RUN/CC3/V9.VANELESS/FINE/cc3_n_12.trb' 
qfile = '/media/Data1/RUN/CC3/V9.VANELESS/FINE/cc3_n_128030.q' 
steps = 100 # number of integration steps 
 
# import math and pyplot libraries for line plotting 
import math 
import pylab as pl 
from matplotlib.ticker import ScalarFormatter 
# import paraview library 
try: paraview.simple 
except: from paraview.simple import * 
paraview.simple._DisableFirstRenderCameraReset() 
 
#  read TURBO Grid and Q File 
cc3_trb = TURBOReader( FileName=gfile) 
# Select Values to load into memory as defined in ParaView 
#   to be mostly equivalent to plot3d function numbers 
#  154 – Mach Number 
#   60 – Radius 
#  112 – Total Pressure 
#  119 – Relative Total Pressure 
#  121 – Total Temperature 
#  156 – Radial Velocity 
#  157 – Meridional Velocity 
#  200 – Velocity Vectors 
#  280 – Relative Velocity Vectors 
cc3_trb.Functions = [154, 60, 112, 119, 121, 156, 157, 200, 280] 
cc3_trb.QFileName = [qfile] 
 
# Contour filter at the user-specified constant-radius location 
radiusContour = Contour( PointMergeMethod="Uniform Binning" ) 
radiusContour.ContourBy = ['POINTS', 'Radius'] 
radiusContour.Isosurfaces = [radius] 
 
# Merge blocks filter necessary since the constant  
#      radius cut likely cuts through multiple blocks 
SetActiveSource(radiusContour) 
mergeBlocks = MergeBlocks() 
 
# Calculator filter to get access to X-coordinate information 
xCalc = Calculator() 
xCalc.AttributeMode = 'point_data' 
xCalc.Function = 'coordsX' 
xCalc.ResultArrayName = 'x' 
 
# Linear discritization of x-coordinate (which is the spanwise  
#   direction on a radial cut) 
xmin = xCalc.PointData["x"].GetRange()[0]*1.001 
xmax = xCalc.PointData["x"].GetRange()[1]*.999 
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xlist = [] 
xstep = (xmax - xmin)/steps 
for step in range(steps+1): 
 xlist.append(xmin + step*xstep) 
 
# Mesh quality filter calculates cell areas (named "Quality" by default) 
meshQuality = MeshQuality() 
meshQuality.TriangleQualityMeasure = 'Area' 
meshQuality.QuadQualityMeasure = 'Area' 
 
# Cell data to point data filter to convert cell area array  
#  to point data array 
CellDatatoPointData1 = CellDatatoPointData() 
 
# Calculator filter to calculate local mass flow rate at  
#  each point on the cutting plane 
weightCalc = Calculator() 
weightCalc.AttributeMode = 'point_data' 
 
#  Various weighted average techniques 
# Mass Average (normal momentum) 
weightCalc.Function = '2*Quality*(Normals.Momentum)'  
# Density Average 
#weightCalc.Function = '2*Quality*Density'  
# Area Average 
#weightCalc.Function = '2*Quality'  
weightCalc.ResultArrayName = 'weight' 
 
# Loop through every point on the constant-radius cut to  
#  sum total surface area and  total mass flow rate normal to the surface 
numPts = servermanager.Fetch(weightCalc).GetNumberOfPoints() 
print numPts; 
weight = servermanager.Fetch(weightCalc).GetPointData().GetArray("weight") 
quality = servermanager.Fetch(weightCalc).GetPointData().GetArray("Quality") 
 
weightTotal = 0 
areaTotal = 0 
 
for i in range(0,numPts): 
 weightTotal += weight.GetValue(i) 
 areaTotal += quality.GetValue(i)*2 
#output 
print 'Total Area = ' + str(areaTotal) 
print 'Total Weight Function = ' + str(weightTotal) 
 
# Loop through discretized x-values (spanwise direction), generating  
# a constant-x line along the constant-radius surface. Weighted radial and     
# tangential velocities, total pressure, and total temperature are calculated  
# and summed at each circumferential point # along the line, then divided  
# by the total mass flow along the line.  This gives spanwise profiles  
# of averaged radial and tangential velocities, P0 and T0. 
radVel = [] 
tanVel = [] 
P0 = [] 
T0 = [] 
Ps = [] 
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for xpos in xlist: 
 SetActiveSource(weightCalc) 
 xContour = Contour( PointMergeMethod="Uniform Binning" ) 
 xContour.PointMergeMethod = "Uniform Binning" 
 xContour.ContourBy = ['POINTS', 'x'] 
 xContour.Isosurfaces = [xpos] 
 xLine = servermanager.Fetch(xContour) 
 numPtsLine = xLine.GetNumberOfPoints() 
 weightLine = xLine.GetPointData().GetArray("weight") 
 radVelLine = xLine.GetPointData().GetArray("RadialVelocity") 
 tanVelLine = xLine.GetPointData().GetArray("TangentialVelocity") 
 P0Line = xLine.GetPointData().GetArray("TotalPressure") 
 T0Line = xLine.GetPointData().GetArray("TotalTemperature") 
 PsLine = xLine.GetPointData().GetArray("Pressure") 
 weightLineTotal = 0 
 weightedRadVel = 0 
 weightedTanVel = 0 
 weightedP0 = 0 
 weightedT0 = 0 
 weightedPs = 0 
 for i in range(0,numPtsLine): 
  weightLineTotal += weightLine.GetValue(i) 
  weightedRadVel += weightLine.GetValue(i)*radVelLine.GetValue(i) 
  weightedTanVel += weightLine.GetValue(i)*tanVelLine.GetValue(i) 
  weightedP0 += weightLine.GetValue(i)*P0Line.GetValue(i) 
  weightedT0 += weightLine.GetValue(i)*T0Line.GetValue(i) 
  weightedPs += weightLine.GetValue(i)*PsLine.GetValue(i) 
 radVel.append(weightedRadVel / weightLineTotal) 
 tanVel.append(weightedTanVel / weightLineTotal) 
 P0.append(weightedP0 / weightLineTotal) 
 T0.append(weightedT0 / weightLineTotal) 
 Ps.append(weightedPs / weightLineTotal) 
 Delete(xContour) 
 
# Calculate span and flow angle  
#    (here, zero flow angle is in the radial direction) 
span = [1-(x-xmin)/(xmax-xmin) for x in xlist] 
alpha = [math.atan2(tan,rad)*180/math.pi for rad,tan in zip(radVel,tanVel)] 
print radVel 
print tanVel 
print alpha 
print span 
print P0 
print T0 
print Ps 
 
# Delete filters created in this script 
Delete(weightCalc) 
Delete(CellDatatoPointData1) 
Delete(meshQuality) 
Delete(xCalc) 
Delete(mergeBlocks) 
Delete(radiusContour) 
 
# Plot circumferentially averaged profiles 
fig = pl.figure() 
pl.suptitle("Profiles at radius " + str(radius) +  
 "\n averaged along " + str(steps) + " spanwise locations") 
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ax1 = fig.add_subplot(2,2,1) 
ax1.plot(P0,span) 
pl.xlabel("Total Pressure Ratio") 
pl.ylabel("Fraction Span") 
pl.grid(True) 
ax2 = fig.add_subplot(2,2,2, sharey=ax1) 
ax2.plot(T0,span) 
pl.xlabel("Total Temperature Ratio") 
pl.ylabel("Fraction Span") 
pl.grid(True) 
ax3 = fig.add_subplot(2,2,3, sharey=ax1) 
ax3.plot(alpha,span) 
pl.xlabel("Flow Angle (deg)") 
pl.ylabel("Fraction Span") 
pl.grid(True) 
ax4 = fig.add_subplot(2,2,4, sharey=ax1) 
ax4.plot(Ps,span) 
pl.xlabel("Pressure Ratio") 
pl.ylabel("Fraction Span") 
pl.grid(True) 
pl.gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) 
pl.show() 
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Appendix B.—Modifying TURBO Block Decomposition Using 
Turbomachinery Gridding System (TGS) 

Over the course of this project, a procedure has been developed for altering the block decomposition 
for TURBO turbomachinery analysis. This can be useful in finding the optimal block size for maximizing 
computing efficiency. It can also be helpful in postprocessing by reducing the block count. TURBO 
execution depends on the following file groups: 

 
GUn0—Grid file for each block of the decomposition (n = 1 → nmax) 
QUn0—Flow file for each block of the decomposition 
bc.in—File containing physical boundary conditions as applied to each block 
dmap.in—File containing the block connections for each of n blocks 
turbo.in—File containing information about how blocks are collected into blade rows 

 
The use of this procedure requires that the geometry be meshed and collected into the minimum 

number of blocks to be considered. For example, Figure 11 shows a mesh for the CC3 impeller (Ref. 9) 
that includes 11 blocks, including O-mesh blocks around the blades and the tip gap meshes. This is the 
minimum number blocks for this case when following general practices for TURBO block 
decomposition. Most of these blocks are too large for actual computation, so they must be subdivided. 
This process requires that the bc.in, dmap.in, and turbo.in files be created for these basic blocks as if they 
would be used with TURBO. For this case, bc.in contains 37 boundary patches and dmap.in contains 27 
boundary patches. A TGS script for decomposition will include the following steps: 

 
(1) Read grid and flow files. 
(2) Read boundary condition files. 
(3) Subdivide each block as desired. 
(4) Write a new set of files for the new decomposition. 

 
An example script with documentation is included at the end of Appendix B. In general, the size of 

each block is compared with the maximum desired size and divided accordingly. For use in TURBO, each 
new block will have a minimum of four cells in each direction and will include an even number of cells in 
each direction. (This is the default, although these rules can be altered.) Running the sample script results 
yields a TURBO grid of 181 blocks with a maximum block size of 43,000 points, as shown in Figure 12. 
The file bc.in is updated to contain 599 patches, and the dmap.in file now contains 377 patches. The 
turbo.in file is not applicable in the case because it is an isolated blade row. A new file called extract.in is 
also created in the process and can be used to reassemble the solution files into the original 11 blocks 
from the 181-block computation. This is done with the TGS command: 

 

Python Code 
tgs.merge(TurboData="PATH") 
# PATH is the directory path of the 181-block analysis 

 
This case could then be restarted with a different block count. Note that this will not maintain time 

accuracy or phase-lag continuity. Some boundary values and time history information is not kept. These 
TURBO block decomposition procedures in TGS can be used to subdivide TURBO meshes to the desired 
number of blocks. 
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Figure 11.—CC3 impeller with minimum 11 blocks. 

 
Figure 12.—CC3 impeller with 181 blocks. 
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TGS Python Script for TURBO Block Decomposition 

Python Code 
#!/usr/bin/python 
 
# set size limit for decomposition 
size_limit=43000 
 
# import tgs 
import tgs 
 
# initialize tgs and get block count in baseline directory 
tgs.init(File="decomp.inp") 
nb = tgs.count_gu_files(Path="../BASE") 
 
# define lists and read grid and flow files 
gn=[] 
qn=[] 
name=[] 
qname=[] 
 
for n in range(nb): 
        f = "../BASE/GU"+str(n+1)+"0" 
        qf = "../BASE/QU"+str(n+1)+"0" 
        name="GRID"+str(n) 
        qname="Q"+str(n) 
        gn.append(name) 
        qn.append(qname) 
        tgs.read(Part="grid",Name=name,File=f,Type="turbo_gu",Form="unf") 
        tgs.read(Part="data",Grid=name,Name=qname,File=qf, Type="turbo_qu",Form="unf") 
 
# read bc and dmap files. turbo.in not required for single blade row 
tgs.read(Part="bc",File="../BASE/bc.in",Type="turbo_bc", Grid="GRID",Name="GU") 
tgs.read(Part="bc",File="../BASE/dmap.in",Type="turbo_dmap", Grid="GRID",Name="GU") 
 
# set blade row and passage number of existing blocks 
for n in range(nb): 
        tgs.boundaries(Grids=gn[n],BoundaryFunction="set_blade_row", BoundaryData="1") 
        tgs.boundaries(Grids=gn[n],BoundaryFunction="set_blade_passage", BoundaryData="1") 
 
# loop over block and check size 
rotorgrids="" 
rotordata="" 
for n in range(nb): 
        g = "GRID"+str(n) 
        q = "Q"+str(n) 
        # get grid size 
        nx = tgs.get_grid_size_x_by_name(g) 
        ny = tgs.get_grid_size_y_by_name(g) 
        nz = tgs.get_grid_size_z_by_name(g) 
        size=nx*ny*nz 
        print "grid size @ ",n," = ",size 
 
        # compare block size with limit 
        if size > size_limit: 
                # get number of splits required to achieve grid size 
                ns = int(1 + float(size)/float(size_limit)) 
                # call turbo grid splitter to split in I direction 
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                tgs.utility(Grid=g,Data=q,Function="turbosplit", N1=str(ns),N2=str(1)) 
                # add grid children to list of grids (add -> to grid name) 
                rotorgrids=rotorgrids+g+"->" 
                rotordata=rotordata+q+"->" 
                tgs.delete(Grid=g) 
                tgs.delete(Data=q) 
        else: 
                # add grid to list if already small enough 
                rotorgrids=rotorgrids+g 
                rotordata=rotordata+q 
        if n < nb-1: 
                rotorgrids=rotorgrids+"," 
                rotordata=rotordata+"," 
 
print "rotor grids = ",rotordata 
 
# build a group for export 
tgs.group(Name="ROTOR",Data=rotordata) 
 
# write TURBO files in the current directory 
tgs.write(Type="turbo_gu_old",Form="unf",Name="TTT",Groups="ROTOR") 
 
tgs.free() 
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