

Post-test Inspection of NASA's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

7/25/16

George C. Soulas & Rohit Shastry

Introduction

- NEXT Long Duration Test (LDT) conducted as part of service life verification approach
- LDT thruster operated from June 2005 to February 2014, after which test was voluntarily terminated
 - 918 kg propellant throughput
 - 51,184 h operation
 - 35.5 MN's

Operating Condition	Segment Duration, h	Post- Segment Duration, h
3.52 A, 1800 V	13,042	13,042
3.52 A, 1179 V	6,478	19,520
1.20 A, 679 V	3,411	22,931
1.00 A, 275 V	3,198	26,129
1.20 A, 1800 V	3,111	29,240
3.52 A, 1800 V	21,944	51,184

- LDT thruster vented to atmosphere April 2014 for inspection
 - lon optics inspection nearly completed
 - Paper presents ion optics results to date

Optics Inspection Objectives & Plan

- Measure wear of & deposition on critical surfaces to verify & update service life models
 - Screen grid wear of upstream surface
 - Accelerator grid wear of downstream surface & aperture walls
 - Deposition on both grids (potential source for grid short)
- Verify in situ erosion measurements
 - Grid aperture diameters, center cold grid gap, groove depth
- Resolve thruster-related issues encountered during test
 - Impedance degradation, unanticipated performance trends, sources of rogue holes, and differences between models & observed erosion
- Verify design changes made prior to LDT had desired impacts
 - Grid masking, accelerator aperture diameter increase & control, compensation change
- Identify any unanticipated thruster life-limiting phenomena

Test Hardware

EM3 thruster

- Much of design & design approach evolved from NSTAR
- Prototype model ion optics utilized
 - Manufactured by Aerojet
 - Two grid, convex electrodes
- PM optics design includes:
 - 36 cm beam extraction diameter for reduced outer aperture erosion
 - Improved manufacturing of electrodes for tighter aperture tolerances & reduced cusp profile
 - Improved mounting design that reduced stresses for gap stabilization
- Comparisons with NSTAR electrodes
 - NEXT screen grid aperture diameters, centerto-center hole spacing, & thickness are same
 - NEXT accelerator grid aperture diameters & thickness are 11% & 50% larger, respectively
 - NEXT cold grid gap 8% larger at center
 - NSTAR beam extraction diameter 28.4 cm

Cold Grid Gap

Cold Grid Gap

- Post-test cold grid gap
 - Measured with gages
 - Corrected for downstream screen surface deposition
- Change in cold grid gap (% pretest center gap):
 - Center = -4%
 - Average = -7%
 - NSTAR ELT = -30%
- Efforts to stabilize NEXT cold grid gap were largely successful
- In situ diagnostic (center cold grid gap) correlates with posttest measurement within uncertainties

Screen Grid

Screen Grid Overall Condition

Net erosion of upstream screen grid surface

Screen Grid Upstream Erosion

- Upstream grid exhibited chamfered erosion pattern
 - Pronounced near grid center, faded away with increasing radius
 - Very similar to NSTAR ELT erosion pattern
- Worst case screen webbing erosion was close to center of a ridge for screen grid service life assessment

Screen Grid Thickness

- Webbing cross-sectioned
 - Radius B selected because along probe path & highest j_h
 - Photomicrographs show eroded pattern & deposition
- Minimum screen grid thickness was 86% of pretest (off-center)
- Screen grid has substantial service life remaining

Screen Grid Deposition

- Deposition on aperture walls & downstream surface
- Deposition composed of grid material & C with trace O & trapped Xe
 - Grid material from accelerator aperture erosion
 - C likely back-sputtered
- Backscattered electron image shows:
 - Broad discolored bands, likely from operation at different throttled levels
 - Whitish lines, likely from perveance measurements

Screen Grid Aperture Wall Deposition

- Aperture wall deposition was thicker on webbing surface closest to grid center at large radii, which increased with radius
 - Due to non-uniform accelerator wall erosion
- Deposition led to average 2.2% decrease in screen aperture diameters
 - Reduces open area by 4.4% & likely contributed to reduced screen grid ion transparencies during test

Screen Grid Downstream Deposition

- Downstream webbing deposition was small percentage of cold grid gap
- Little evidence of deposition spalling
- Deposition increased with increasing radius & was thickest closest to optics center
 - Due to non-uniform accelerator aperture wall erosion

Optics Center →

Accelerator Grid

Accelerator Grid Overall Condition

- Net carbon deposition was observed throughout most of grid perforated region
- Net carbon deposition expected within aperture walls
 - Removal rate of back-sputtered carbon decreases as aperture enlarges
- Net carbon deposition within pit & groove erosion pattern unexpected
 - Investigation revealed that erosion persisted until 36.5 kh (621 kg throughput)

r = 1.7 cm

Accelerator Grid Downstream Erosion

Pit & groove erosion pattern

r = 6.5 cm

 Evident and fades away at larger radii due to masking by back-sputtered carbon

r = 17.6 cm

Grooves that are deeper than pits

r = 9.0 cm

- Chamfering of downstream accelerator apertures evident
 - Measured with in situ diagnostics at three radial locations
 - Transitions to hexagonal star-shaped pattern at outer radii

Accelerator Grid Upstream Aperture Erosion

- Slight chamfering of upstream aperture is evident
- At larger radii, chamfering is preferentially towards grid outer radius
- Erosion is result of minor systemic aperture misalignment, leading to preferential erosion of surfaces closest to deflected beamlet
- This erosion likely caused:
 - Uneven deposition on screen aperture walls & upstream surfaces
 - Slightly more collimated beam profiles at EOL
- Resolution is straightforward adjust aperture alignment during manufacture

Accelerator Grid Pit & Groove Erosion

- Webbing cross-sectioned
 - Radius selected because along probe path & highest j_h
 - Photomicrographs show eroded pattern & deposition
- Groove depths were 27-35% of grid thickness within 6 cm radius, then decreased
 - Transition from net erosion to net deposition at full power appear consistent with posttest measurements
- Max groove depth was half that measured in situ diagnostics
 - Due to changes in reference plane locations
 - More recent measurements show groove depths as large as 45% thickness

Accelerator Grid Aperture Enlargement

- Minimum aperture diameters without deposition increased by ~5-7% of pretest measurements
 - In situ measurements indicate that minimum diameter increases occurred during throttled power operation (13.0-29.2 kh)
- Smaller than NSTAR ELT changes, which was as large as 24% of pretest
 - In addition to different operating voltages, lower peak beam current density & 11% larger **BOL** diameter
- In situ measurements compared & favorably with post-test
 - Within measurement uncertainties

Accelerator Grid Aperture Erosion

- Downstream aperture diameters without deposition increased by 24-33% of pretest diameter
 - In situ measurements indicate that that increase occurred predominantly during 1st full power segment (up to 13 kh)
- Grid geometric changes (36 cm, large diameter, & better tolerance control) reduced degree of erosion at larger radii
- Upstream diameter increased by as much as 17% of pretest diameter
- Impact on ion optics performance requires further assessment
 - Affect perveance, electron backstreaming, & accelerator current

Summary

- Average change in cold grid gap was -7% of pretest center gap
 - Efforts to stabilize NEXT cold grid gap were largely successful
- Screen grid
 - Upstream erosion exhibited chamfered erosion pattern with minimum grid thickness at 86% of pretest thickness
 - Screen grid has substantial service life remaining
 - Deposition
 - Composed of grid material from accelerator aperture erosion & back-sputtered carbon
 - On aperture walls: Thicknesses up to 1.9% of nominal diameter
 - Average aperture diameter decreased by 2.2% from deposition
 - On downstream surfaces: Thicknesses up to 5% of center grid gap
 - Little evidence of spalling

Summary

- Accelerator grid
 - Net carbon deposition within pit & groove erosion pattern
 - Investigation revealed that erosion persisted until 36.5 kh (621 kg throughput)
 - Downstream erosion
 - Groove depths deeper than pits
 - Groove depths were 27-35% of grid thickness for 6 cm radius, then decreased
 - Aperture erosion
 - Slight upstream aperture chamfering is evident and preferentially towards grid outer radius at larger radii
 - Erosion is result of minor systemic aperture misalignment that can be corrected
 - Minimum aperture diameters increased by ~5-7% of pretest measurements
 - Downstream aperture diameters increased by 24-33% of pretest diameter
 - Upstream diameter increased by as much as 17% of pretest diameter

Future Work

- Make additional measurements
- Complete correlation of inspections results with test data
 - Understand impact of back-sputtered carbon on test results
- Verify/update service life models

Backup

Recent Groove Measurements

- Groove depths as deep as 45% of grid thickness
- Transition from net erosion to net deposition at 14-16 cm

Pit Measurements

- Pit depths as deep as 27% of grid thickness
 - Less than groove depths

Screen Grid Deposition

- Partial ring deposition
 - Non-uniformly distributed azimuthally
 - Center of ring aligned with outer radius
 - Coverage increased from 90° at mid-radius to 240° at r = 18 cm
 - Maximum protrusion into aperture was 4% of nominal diameter
- Backscatter electron image shows that ring predominantly formed during second full power segment (after 29 kh)
- Although cause unknown, likely a facility effect that only modestly reduced open area (~2.5%)

Upstream, r = 10.8 cm

Upstream, r = 18 cm

r = -13.4 cm

Accelerator Grid Net Deposition

- In situ images show net erosion evident 35.6 kh
 - Imaging system failed
- Long range images
 - Net erosion to 36.5 kh (621 kg) throughput), but net deposition by 41.5 kh
 - 36.5 kh image shows changes have just begun to occur
- Root cause presently unknown
 - At 41.5 kh (2nd full power segment), annular net erosion pattern evident
 - Only known mechanism is redistribution of accelerator current

Grid Masses

Screen grid

- Net mass loss of 0.8 gm
- Deposition would have masked mass loss due to erosion
- Based on erosion measurements, preliminary mass loss from erosion estimated to be 5.2 gm
 - Mass of deposition difficult to estimate
- NSTAR ELT mass loss due to erosion was 3.2 gm
 - Difference due to longer duration & higher beam currents of LDT

Accelerator grid

- Net mass loss of 29.5 gm
- Deposition mass was 12.4 gm based on measurement & analysis
- Based on deposition mass, preliminary mass loss from erosion estimated to be 42 gm
 - Does not include deposition on unperforated region
- NSTAR ELT mass loss due to erosion was 33.7 gm
 - Difference due to longer duration & higher beam currents of LDT

Accelerator Grid Rogue Holes

- Four rogue holes identified on accelerator grid during LDT
- Source of rogue holes (e.g. deposition on screen apertures) was not found

Accelerator Grid Aperture Enlargement

- Minimum aperture diameters without deposition increased by ~5-7% of pretest measurements
 - In situ measurements indicate that minimum diameter increases occurred during throttled power operation (13.0-29.2 kh)
- Smaller than NSTAR changes, which was as large as 24% of pretest
 - In addition to different operating voltages, lower peak beam current density & 11% larger BOL diameter
- With deposition, diameters decreased due to back-sputtered carbon
 - In situ measurements detected minimum diameter decrease at 38-42 kh

