

Carbon Back Sputter Modeling for Hall Thruster Testing

James H. Gilland*, George J. Williams*,

Jonathan M. Burt*, John T. Yim†

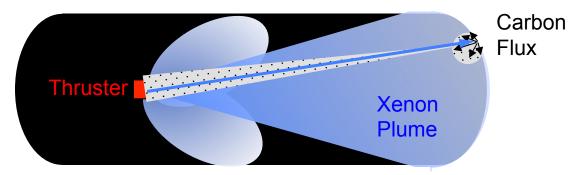
*Ohio Aerospace Institute

†NASA Glenn Research Center

52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, UT July 27, 2016



Outline


- Statement of Problem
- Carbon Back Sputter Review
 - Observed Back Sputter
 - Sputter Yields
 - Sputter Models
- Current Work
 - Model Approach
 - Analytic
 - Numerical
 - o HAP
 - Experiment
 - Results
 - Modeling
 - Experiment
 - Conclusions

Facility Back Sputter Affects on Thruster Life Validation

- Carbon sputtering from vacuum facility walls introduces contamination and deposition back to thruster surfaces
- As space based erosion mechanisms are progressively reduced, facility deposition effects become more important.
 - NEXT Ion thruster grid life (51.2 kh Extended Life Test)
 - Magnetically Shielded Hall Thruster insulator life (50 kh design life)
- Possible effects of back sputter on life testing
 - Competitive deposition/erosion processes on insulator surfaces could mask erosion process in space
 - Build up of conductive carbon layers could introduce arcing or shorting in ground test thrusters

Leveraging Resources through Collaboration

Tests with facility carbon observed

- Previous life and wear tests have experienced facility back sputter
- lon
 - NSTAR Extended Life Test (~30,000 h/150 kg throughput)
 - Net erosion observed on grid
 - NEXT 2000 h wear test
 - NEXT Long Duration Test (51,200 h/918 kg)
 - Carbon lined chamber
 - QCM measurement
 - Carbon deposition at localized positions on grid
- Hall
 - SPT-100 (90's)
 - Low accuracy visual observance of films on back of witness plates
 - H6 Magnetic Shield Testing (100's of h)
 - QCM measurement at single location near thruster
 - BN surface profiles
 - HERMeS Thruster (on going)

7/27/2016

Summary of Carbon/Life Tests

Thruster	Tank	L (m), D(m)	λ	n	Specific Impulse	Beam Voltage	Beam Current	Measured Carbon Deposition	Predicted	Measured as % of Predicted	Normal Sputter Yield
					sec	V	A	μm/khr	μm/khr		Atoms/ion
NSTAR ELT, wear test	JPL 148	10, 3	64	0.94	2000-3000	650-1100		14-20 μm/ 0.7	18 μm/ 0.6	78-110	
NEXT 2khr	GRC VF 6	21, 7.3	64	0.94	4000	1800	3.52	2	0.56	360	0.718
NEXT LDT c. 2005	GRC VF 16	7.6, 3	64	0.94	4000	1800	3.52	3.02	3.94	77	0.718
HiPEP (Herakles Precursor) 2khr	GRC VF 6	21, 7.3	64	0.94	7440	5500	3.6	2-2.5	1.59	126-160	1.638
NEXIS (Herakles Precursor) 2khr	JPL 248	8, 2.6	64	1.94	7080	4809	4.09	7.2-7.8	9.78^	74-80	1.517
NEXT Aerospace	EP2	9.4, 2.4			4000	1800	5	3-10			
Т6	IV10	10, 6			4632	~2700	4.5				
MS Hall	JPL 148	10, 3			2000	300	20	4			
MS Hall 113 h wear test	JPL 148	10, 3			3000	800	11	2.5			
SPT-100	VF-5	9, 4			2500	300	4.5				

Based on Van Noord and Soulas, "A Facility and Ion Thruster Back Sputter Survey for Higher Power Ion Thrusters," AIAA 2005-4067 7/27/2016

Chart 5

Leveraging Resources through Collaboration

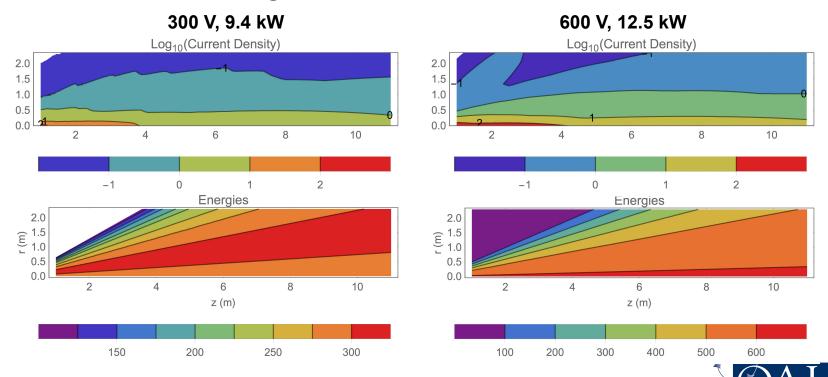
HERMeS Back Sputter Modeling Approach

Analytic and Numerical Modeling

• In Parallel:

- Adapt analytic approach (Van Noord, Soulas, Reynolds) to Hall thruster plume
 - Add empirical j(θ), E(θ) description for more divergent Hall thruster plume
 - Apply to VF-5 (cylindrical) geometry
- Detailed numerical model of full VF-5 geometry, HERMeS Plume
 - HAP DSMC code to track Xe plume, model carbon sputtering particle distribution, and track carbon flux to thruster plane.
 - HAP already used to model pumping speeds in VF-5 with actual cryopanel geometry

Analytic Model

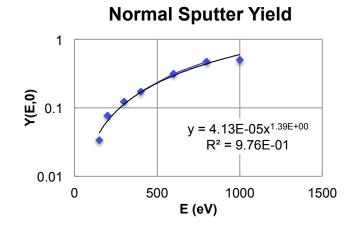

- Ray tracing/Free Molecular Flow
- Axisymmetric
- Trace thruster plume flow to walls
 - Line of site plume propagation to walls
 - $j(\theta) \rightarrow j(r,z)$
 - Angle of incidence from geometry
 - $(\beta) \rightarrow \beta(r,z)$
 - Calculate yield of sputtered particles production to emission angle $\alpha(r,z)$
 - $Y(E_i, \beta, \alpha) = Y_0(E_i)f(\beta) \cos(\alpha)/\pi$
 - Track flux of particles back to thruster plane through view factors

Analytic Model

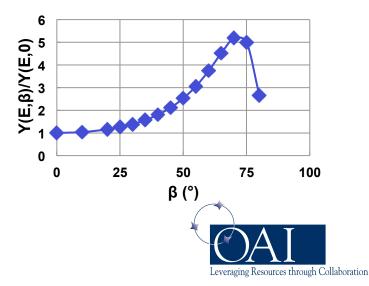
Input profiles

- Plume data obtained from HERMeS probe measurements
 - Faraday, Langmuir, EXB probes
- Using a quasi-analytic approach spline fit $j(\theta)$, $E(\theta)$ data instead of a single function curve fit

Leveraging Resources through Collaboration



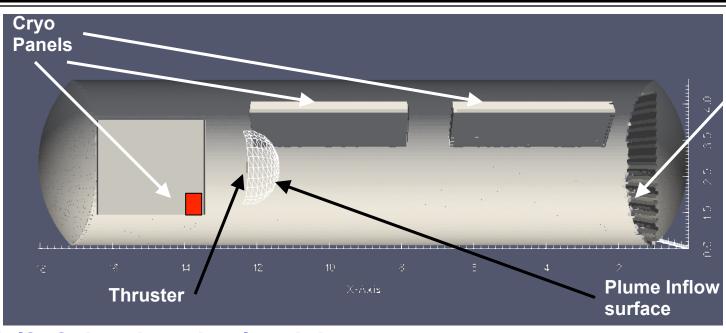
Sputter Yield Model


- Total number of particles sputtered determined by incident energy (E) and angle (β)
 - Empirical fit to data

$$Y(E,\beta) = 4.123 \times 10^{-5} E^{1.388} \frac{e^{-1.0556(-1+Sec(\beta))}}{Cos(\beta)^{3.427}}$$

- Defines total number of particles produced, not the direction of the sputtered atoms
- For HAP, assumed a constant sputtered particle energy of 3 eV

Angle of Incidence Yield


Hypersonic Aerothermodynamics Particle (HAP) Code

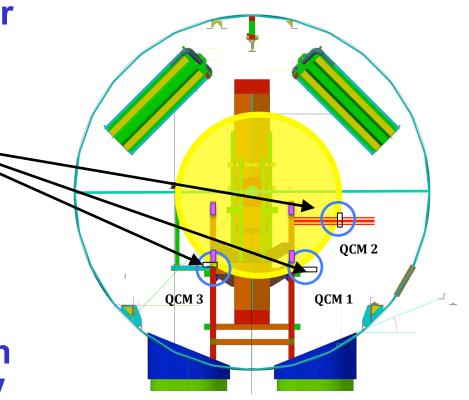
- Direct Simulation Monte Carlo Code developed for hypersonic applications
 - Previously used to predict pumping performance in NASA GRC VF-5
 - Thruster plume is defined on a 1 m radius, ¼ spherical surface
 - Data obtained from HERMeS probe measurements
 - Faraday, Langmuir, EXB probes
 - Variable Hard Sphere energy-dependent cross sections
 - Xe: $d_{ref} = 5.74 \text{ Å}, \ \omega = 0.35$
 - C: $d_{ref} = 3.23 \, \text{Å}$
 - T_{ref}: 273K

Vacuum Facility 5 geometry for HAP

Beam Dump

- Half of chamber simulated due to symmetry
- Thruster is located 0.1 m below center line
- Cryo pump surfaces included
- End beam dump made of angled carbon plates
 - 10° upper plates to the vertical upper plates, 30° lower plates
- All surfaces assumed carbon coated
- Plume inflow defined over ¼ sphere at 1 m radius
- Calculations within flux surface (at thruster) not accurate

Experimental Measurements

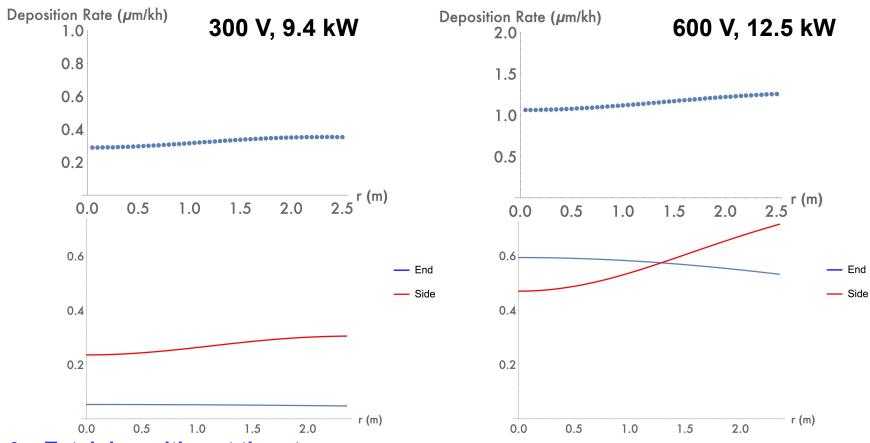

 Ongoing wear testing of HERMeS TDU-1 thruster

Wear operating condition: 600 V, 12.5 kW

Testing has exceeded 1000 hours

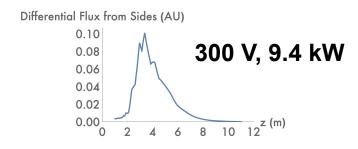
As part of testing, 3
 Quartz Crystal
 Microbalances located
 near thruster plane

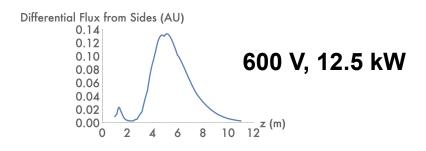
 Back sputter deposition measured continuously during testing

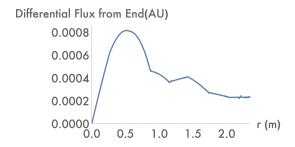


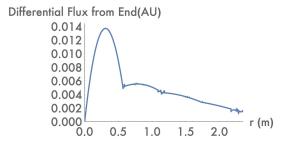
RESULTS

Analytic Model – Total Deposition Rate

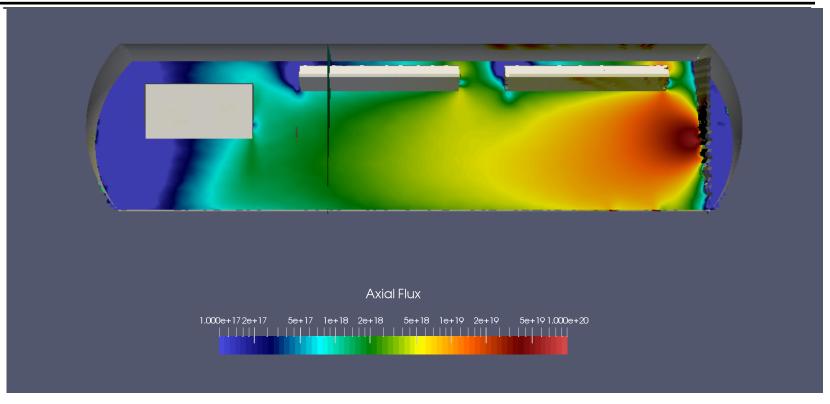



- Total deposition at thruster
 - 0.3 μm/kh (300 V
 - 1.1 μm/kh (600V) at thruster
- Uniform (<10%) across thruster plane
- Relative contributions of walls and end cap dependent on power, energy, plume shape



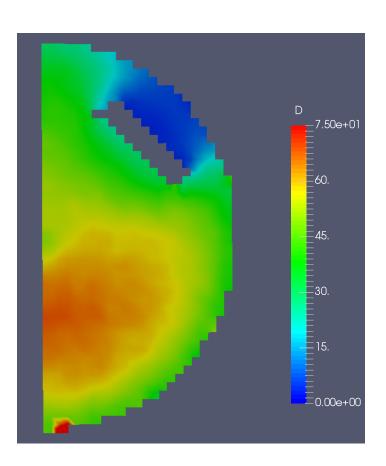


Analytic – Sputter erosion location



- 300 V case shows sputter from walls near thruster
 - Wall sputter from 2 6 m
 - End Cap sputter at 0.5-1.0 m radius
- 600 V case wall sputter occurs further from thruster
 - Wall sputter from 2 6 m
 - End Cap sputter at 0.2-0.5 m radius

HAP Calculation Axial Carbon Flux Back to Thruster


- Incorporates diffuse sputter directional distribution
- Over estimates flux magnitude
- Calculate axial flux at a plane 0.1 m in front of input boundary

Leveraging Resources through Collaboration

Calculated Sputter Deposition Profile 1.1 m from Thruster Plane

- Deposition thickness rate across plane in front of the center
 - Calculated from axial flux across the plane
 - Top/bottom asymmetry from beam dump, thruster location
 - Uniformity across symmetry axes is comparable to measurement, analysis.
- Much higher rates than measured
 - Cause under investigation
 - Plume data is the same as that used in analytic model
 - Yield calculation, particle propagation still being investigated

Experimental Measurements

- Primary wear test point: 600 V, 12.5 kWe
- During wear test, the thruster was tested with two pole cover materials:
 - Graphite
 - Alumina

Pole Cover	QCM 1 (µm/kh)	QCM 2 (μm/kh)	QCM 3 (µm/kh)	Analytic Prediction
Graphite	1.74	1.90	1.81	1.1 μm/kh
Al_2O_3	1.55	1.67	1.63	

 Measurements are 1.6 – 1.8 µm/kh, higher than analytic prediction

Conclusions

- To support life validation of high power Hall thrusters such as the HERMeS thruster, analytic and DSMC models of carbon back sputter in the NASA GRC VF-5 facility have been developed.
 - Both models incorporate empirical Hall thruster plume profiles
 - Empirical sputter yields, distributions are used
- Model predictions are benchmarked with experimentally measured deposition rates in the HERMeS wear test
- At the HERMeS thruster wear test operating condition, 600 V and 12.5 kW:
 - Analytic model predicts 1.1 μm/kh
 - Measurements give 1.5 1.8 μm/kh
- Modeling is being benchmarked with back sputter measurements in the ongoing HERMeS thruster wear test
 - Analytic model under-predicts deposition by 50%
 - DSMC code gives unrealistically high deposition rates

Future Work

- Resolve DSMC over-prediction
 - Generate test cases to evaluate accuracy
 - Refine inflow boundary (extends computational time)
- Examine model sensitivity to plume profiles
- Improve differential sputter yield relation to include both polar and azimuthal dependence of sputtered material
- Continue gathering experimental back sputter data for remainder of HERMeS wear test

