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Background

• In the 1950’s and 1960’s USAF and NASA 
requirements drove the development of 
large scale LH2 systems

• Kennedy Space Center has not substantially 
changed its LH2 hardware or processes since 
that time 

• Inefficiencies lead to the loss of almost 50% 
of hydrogen purchased by SSC and KSC 
during the shuttle program

• Total Shuttle losses at KSC were calculated 
to be 24.6 M lbs of LH2, or $59M based on 
2016 prices

• Re-liquefiers have been proposed for LC-39 
but never incorporated by KSC

• Some technology development work done 
with densified propellants but never 
incorporated by NASA
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Zero Boil-Off (ZBO) History

• Zero boil off refers to the ability to store cryogens for indefinite periods with no 
losses

• ZBO can be accomplished with re-liquefiers (use stored fluid as working fluid) or 
close cycle cryocoolers
– 1950’s   Industrial gas industry develops re-liquefiers for helium storage

– 1962 National Bureau of Standards develops hydrogen re-liquefier

– 1967  Air Products designs hydrogen re-liquefier for in-space use

– 1977 Martin Marietta proposes to incorporate a re-liquefier for use at LC-39 for upcoming 
Shuttle Program

– 1991  Energetics Inc proposes re-liquefier for LC-39 also capable of recovering tanker and 
chilldown losses

– 1993  Hydrogen Consultants Inc develops prototype closed cycle Joule-Thomson 
cryocooler for LC-39 zero boil off (SBIR Phase II)

– 1999-2002 Space simulated ZBO testing at MSFC with commercial cryocooler, mixing pump, and 
axial jets

– 2000’s Multiple trade studies and cryocooler development projects for in space ZBO

– 2002-06 ZBO testing using IRAS at Florida Solar Energy center

– 2004 ZBO testing at GRC using LN2 and commercial cryocooler

– 2012-14 ZBO testing at GRC using flight like cryocooler and broad area cooling
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Densification History
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• LH2/LOX are the most energetic chemical propellants practical, but LH2 suffers from low density and volumetric 
heat capacity. 

• Hydrogen densification can be used to increase the liquid density and heat capacity

• Densification can lead the a large increase in payload mass (15%)

• NASA/USAF has investigated use of densified LOX/LH2 since the 1960’s

– 1960’s   National Bureau of Standards quantifies densified and slush hydrogen thermodynamic properties

– 1977 Martin Marietta report on SSTO using densified LOX and LH2

– 1988- 94 NASP X30 Slush Hydrogen Technology Program - large scale production, transfer and in-tank 
thermodynamics

– 1995- 97 LH2 densification prototype system - 2 lb/sec rig tested at K-Site X33 RLV Precursor Demo

– 1996  Hot fire ignition test of RL10B-2 engine with densified LH2 at Plum Brook B2

– 1998   Demonstration of DLH2 loading, hold and thermal stratification in a composite flight weight dual-lobe 
tank

– 1997- 2001  Design, build and test of large scale LOX & LH2 propellant densification units for X-33/RLV flight   

– 2000   STA Tank Loading Tests w/GRC 30 lb/sec LOX PDU at GRC S40

– 2001   LN2 Performance Demo Tests w/GRC 8 lb/sec LH2 PDU at GRC S40  (funding terminated before hydrogen
testing)

– 2001   Space shuttle performance enhancement study with propellant densification – 8 mo. multi-center effort

– 2002-06 LH2 densification to 15K using IRAS with Florida Solar Energy Center

– 2002-03  2nd GEN RLV Program -- funded three densification technology demonstrators (PHPK, Sierra Lobo, and 
LM/Praxair)

– 2008  Design, fabrication & integration of a Cryogenic Propellant System capable of conditioning LCH4 (GRC) 

– 2015 SpaceX using densified LOX, not to increase mass to LEO, but to enable reusability



Integrated Refrigeration and Storage (IRAS)

• Interface a cryogenic refrigerator to a liquid 
hydrogen storage tank via an internal heat 
exchanger

• Remove energy directly from the liquid to control 
bulk fluid

• Enables Zero Boil Off, Densification, and 
Liquefaction

• NASA and DoE funded small scale LH2 IRAS proof of 
concept demonstration from 2002-06

• Exploration Technology Development Program 
funded IRAS Heat Exchanger characterization tests 
in 2008-09 as part of Cryogenic Fluid Management 
(CFM) Project

• Plans for ETDP large scale Integrated Refrigeration 
and Storage demonstration cancelled in FY10 
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GODU-LH2 Project

• HEOMD recognized the need and called for “Efficient ground-based systems for cryogenic 
fluid storage and transfer” in the 2012 AES PRG 

• GODU-LH2 combined with Autonomous Command and Control development to submit the 
Integrated Ground Operations Demonstration Units (IGODU) proposal

• Proposal scored a 92 during evaluations and was described as a “Strong effort of actual 
hardware development and highly relevant tasks”
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Project Goal
“Demonstrate cost efficient cryogenic 
operations on a relevant scale that can be 
projected onto future Spaceport architecture”

Primary Objectives
1. Demonstrate zero loss storage and transfer 

of LH2 at a large scale.
2. Demonstrate hydrogen densification in 

storage tank
3. Demonstrate in situ hydrogen liquefaction



Site Build-Up
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September 14th, 2012October 30th, 2014
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Site Build-Up

January 9th, 2013



10

Site Build-Up

April 2014

January 13th, 2014

January  2014

November 2015



GODU-LH2 Functional Diagram
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“Bird’s-eye View” of GODU-LH2 Site
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Test Matrix and Timeline

• Completed Test Readiness Review on February 12, 2015

• First tanker offload occurred May 21, 2015

• Refrigerator contamination from October 2015 until March 2016

• Compressed testing from March 2016 until October 2016
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Zero-Loss Tank Chilldown Test Results

• Initial Conditions  
• 99.95% GH2 at 300 K  and 

40 psia. 

• Lock up tank and turn on 
refrigerator at T-0.

• Add GH2 as tank pressure 
decreases

• Final Conditions
• Tank near isothermal at 

20.8K - 22.4 K and 
14.7 psia

• Saturated vapor with 
condensation on HX 
tubing

• Multiple lessons learned 
would decrease total 
timeline in the future Conclusion:  IRAS enables zero-loss chilldown

of a large cryogenic vessel

Pressure

Temperatures

GH2 Fills
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Zero-Loss Tanker Offload Test Results

• Based on STS Program 
data, 13% of purchased 
LH2 is lost due to 
transport and offload 
inefficiency

• Heat from transport 
and line chilldown can 
be removed by 
refrigerator, allowing no 
loss offload

• Zero-loss tanker 
offloads were achieved 
at 33%, 67%, and 100% 
fill levels

Conclusion:  IRAS enables zero-loss tanker offloads at all fill levels

Pressure

Temperatures
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Boil-off Heat Leak Test Results

• Boil off testing to 
quantify heat leak was 
conducted at 3 fill levels

• Vented thru control valve 
and mass flow meter

• Pre-test analysis 
estimated 300 W

 𝐐 =  𝐦 ∗ 𝐡𝐟𝐠 + 𝐡𝐮𝐥𝐥𝐚𝐠𝐞 − 𝐡𝐬𝐚𝐭,𝐯𝐚𝐩𝐨𝐫 [𝐖]

Conclusion:  Tank heat 
leak was quantified at 
three fill levels and 
agreed closely with 
pretest estimates

Ullage Temp (top of tank), Avg. = 49.5 K

Mass Flow, Avg. = 255 splm

Liquid Temp, Avg. = 20.2 K

Pressure, Avg. = 15.2 psia



17

ZBO Pressure Control Test Results

• GODU-LH2 software 
controlled refrigerator 
to achieve and 
maintain IRAS tank 
pressure set-point.

• No LN2 pre-cooling 
used

• Approach set points 
from above and 
below

• Pressure stability 
+/- 0.5% for all three 
fill levels

• Near isothermal 
temperature profile 
following saturation 
line

Conclusion:  IRAS using tank pressure control achieves ZBO 
and provides complete control over the state of the fluid

Pressure

Temperatures

Set Points
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ZBO Temperature Control Test Results

• Linde software 
controlled refrigerator 
to achieve and 
maintain constant 
helium supply 
temperature.

• No LN2 pre-cooling 
used

• Helium supply 
temperature response 
fast and accurate

• But LH2 takes long 
time period to reach 
equilibrium state

Conclusion:  IRAS using supply temperature control achieves ZBO 
but takes a long time to reach LH2 equilibrium state

Pressure

Temperatures
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ZBO Duty Cycle Test Results

• ZBO achieved in batch 
processes by turning on 
and off the refrigerator as 
required

• Testing was both 
accidental and purposeful

• Minimum electrical cost 
but depends on multiple 
start/stop cycles of 
cryogenic equipment

• Duty cycle varied from 
1.13 (33%) to 1.16 (67%) 
to 3.6 (100%) on/off with 
no LN2 precooling

Conclusion:  IRAS using duty cycling of the refrigerator achieves ZBO 
with minimal energy but provides no control of LH2 state

Pressure

Temperatures
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Liquefaction Test Results

• GH2 was controlled 
using a mass flow 
controller until the 
tank pressure 
remained constant. 

• NOT optimized for 
liquefaction.  GH2

was fed in at 
ambient 
temperature.

• Using LN2 pre-
cooling, roughly 
78 gal of LH2 was 
produced during 
the test.

PressureGH2 Mass 
Flow Rate

Liquid Level 
Reading

Conclusion:  Hydrogen liquefaction was achieved using IRAS, 
though the current system was not optimized for yield 
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Densification Test Results

• System performance 
exceeded expectations!  
Min temp was expected to 
be ≈15 K

• Fridge ran with LN2

precooling, and densified 
13,000 gallons of LH2 for 
14 days.

• LH2 cooled below the 
triple point.  Minimum 
temp recorded was 12.6 K 
(-437°F)

• Estimated that 3,700 lb of 
hydrogen ice was formed 
during the course of 
testing; or about 5,100 gal

Conclusion:  IRAS enables propellant densification down to the triple point

Temperatures

Pressure
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Slush Hydrogen Production

33% Tank LH2 Fill Level Test67% Tank LH2 Fill Level Test

H2 Ice Production
≈ 85 hrs

H2 Ice Production
≈ 85 hrs



• GODU-LH2 system has successfully met all test objectives at the 
33%, 67%, and 100% tank fill level

• Complete control over the state of the fluid has been 
demonstrated using Integrated Refrigeration and Storage (IRAS).

– Almost any desired point along the H2 saturation curve can essentially 
be “dialed in” and maintained indefinitely.

• System can also be used to produce densified hydrogen in large 
quantities to the triple point

• Exploring multiple technology infusion paths

– Studying implementation of IRAS technology into new LH2 sphere for 
EM-2 at LC39B

– Technical interchange also occurring with STMD, LSP, ULA, DoE, KIST, 
Kawasaki, Shell Oil, SpaceX, US Coast Guard, and Virgin Galactic
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Conclusions



• Proposing to GSDO to integrate the IRAS technology into a new 1.4M gallon LH2 
sphere required for EM-2

– Analysis demonstrates that $0.15 in electricity saves $1.00 in hydrogen

• Low risk –Failure of system just reverts back to business as usual

• Working with A&E contractor to get cost, schedule and constructability impacts
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Ground Systems Development & Operations



• Densified Hydrogen loading of a flight 
weight tank was a secondary objective 
that was not accomplished.

• Launch Services Program and United 
Launch Alliance want to partner with 
GODU LH2 to perform densified LH2 
loading demonstrations with “Cryote
III” tank

• LSP will contribute modest funding and 
modeling support and ULA will provide 
Cryote III tank and supporting 
equipment

• Plan to submit for possible future AES 
funding 
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Densified Hydrogen Flight Tank Loading Demo



Questions?
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