

Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

Kirsten P. Duffy – University of Toledo / NASA GRC

Hybrid Electric and Turboelectric Aircraft Propulsion

Boeing SUGAR

NASA N3X

Turboelectric Propulsion Benefits

Electric drive = motor + generator + other electrical components

Break-Even on Weight

Each aircraft configuration will yield combinations of power density and efficiency required to achieve net benefit

From Jansen et al. "Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements"

Joint Propulsion Conference

Target Application

- Example HEIST (Hybrid-Electric Integrated Systems Testbed)
- 31-foot span wing section
- 18 fans directly driven by electric motors
- Motors powered by batteries
- Motor dimensions: 5.5" diameter, 2" length
- Target: 13 kW power at 7200 RPM

Our motor design: target 13 kW/kg and 1% loss

http://climate.nasa.gov/news/2286/leaptech-demonstrates-electric-propulsion-technologies/

Double-Halbach PM Array Ironless Axial Flux Motor

Double-Halbach PM Array Ironless Axial Flux Motor

Double-Halbach PM Array Ironless Axial Flux Motor

Pole Pair Analysis

2D magnetostatic pole pair model allows for simple equation-based analysis

Pole Pair Analysis

$$B_{y} = 2B_{R}e^{-ky_{g}}\left(1 - e^{-ky_{m}}\right)\frac{\sin(\epsilon\pi/n_{m})}{\pi/n_{m}}\cos kx\cosh ky$$
$$F_{c} = J\Delta r \int_{x_{1}}^{x_{2}}\int_{y_{1}}^{y_{2}}B_{y}\,dxdy$$
$$k = 2\pi/x_{p}$$

Pole Pair Analysis

Analysis

Force/Torque/Power

$$F_{c} = \left[2JB_{R}\Delta r y_{g} y_{m}\right] \left[\frac{e^{-ky_{g}}}{ky_{g}}\right] \left[\frac{1-e^{-ky_{m}}}{ky_{m}}\right] \left[\frac{\sin(\epsilon\pi/n_{m})}{\pi/n_{m}}\right] \sin kx \Big|_{x_{1}}^{x_{2}} \sinh ky \Big|_{y_{1}}^{y_{2}}$$
$$F_{p} = \sum_{c=1}^{6} F_{c} \qquad T = pr_{a}F_{p} \qquad P = T \ \omega_{r} = T \ RPM \ \pi/30$$

Power Density – Based on Magnet Mass

Small gap / pole size high power density

Power Density – Based on Magnet Mass

Ratio of magnet thickness to pole size

Joint Propulsion Conference

Power Density – Based on Magnet Mass

Analysis

Parameter	Value
Target power	13 kW
Target power density	13 kW/kg Based on magnet and winding mass only
Target loss	< 1% Including magnet and winding losses only
Outer diameter	5.5 inches (140 mm)
Magnet remanence flux, B_R	1.4 T (NdFeB)
Current density, J	3 A/mm ² (natural convection) to 30 A/mm ² (liquid cooling)
Electrical frequency, f	< 2000 Hz ≤ 16 pole pairs at 7200 RPM

25

20

15

10

5

0

0.2

0.4

0.6

Ratio of Motor ID to OD

0.8

Motor Power (kW)

→ J = 3 A/mm^2
→ J = 10 A/mm^2
→ J = 20 A/mm^2
→ J = 30 A/mm^2

Low ID/OD

High ID/OD

1.0

Results

Power Density

 y_c = 3 mm, 16 pole pairs, magnet aspect ratio y_m/x_m = 1 16 pole pairs $\rightarrow f$ = 1920 Hz

Results Conductor Eddy Loss P_e $P_e \propto \sigma f^2 d^2 B_{pk}^2 V_c$

Effect of Magnet Aspect Ratio

Effect of Coil Thickness

Results

Effect of Number of Pole Pairs

Joint Propulsion Conference

Final Motor Performance Verified with Maxwell 3D FEA

Parameter	Value			
Power	13 kW at 7200 RPM			
Power density	12.8 kW/kg Based on magnet and winding mass only			
Loss	0.85% - conductor resistive loss0.11% - conductor eddy current loss0.02% - magnet eddy current loss (3D FEA)			
ID/OD = 0.6, Coil thickness = 3 mm, 16 pole pairs, 20 A/mm ² current density, and magnet aspect ratio = 1				

Difficult to achieve goal of 13 kW/kg and 1% loss in this configuration
Required 20 A/mm² which will require cooling

Conclusions/Future Work

- Continue to investigate configurations that will improve efficiency as well as power density
- Design, build and test
- Targets:
 - >1 MW motor
 - 13 kW/kg
 - 96% efficiency
 - ≻99% efficiency

Acknowledgments

This work was funded by NASA: Advanced Air Vehicle Program Advanced Air Transport Technology Project Hybrid Gas-Electric Propulsion Subproject *Amy Jankovsky subproject manager*

Thanks to the non-cryogenic motor team members from NASA:

- Yaritza de Jesus-Arce team leader
- Cheryl Bowman
- Ryan Edwards
- Ralph Jansen
- Peter Kascak
- Andrew Provenza

Results – Increasing Speed

Redesigned for 13 kW with Gearbox

3D Transient vs 2D Static Results

optimal design compact coils

Equation-based Equation-based Maxwell 3D magnetostatic - magnetostatic - transient optimal design compact coils compact coils

compact coils

3D Transient vs 2D Static Results

Analysis	Torque (N-m)	Resistive Loss (%)	Eddy Current Loss Conductors (%)	Eddy Current Loss Magnets (%)
 Equation-based magnetostatic large coils/optimal	17.3	0.85%	0.11%	-
Equation-based magnetostatic compact coils/high J	16.3	7.6%	0.06%	-
Maxwell 3D magnetostatic compact coils/high J	16.6	-	-	-
Maxwell 3D transient compact coils/high J	16.9	8.1%	-	0.02%

