

Persistent Platforms in Space – Next Generation Infrastructure

- Deep Space Gateway
- In Space Manufacturing
- In Space Robotic Manufacturing and Assembly

National Space Symposium April 3, 2017 Colorado Springs, CO

R.G. Clinton Jr., PhD Associate Director Science and Technology Office NASA Marshall Space Flight Center

Exploring Space In Partnership

Now

Using the International Space Station 2020s

Operating in the Lunar Vicinity

2030s Leaving the Earth-Moon System and Reaching Mars Orbit

Phase 0

Solve exploration mission challenges through research and systems testing on the ISS. Understand if and when lunar resources are available

Phase 1

Conduct missions in cislunar space; assemble Deep Space Gateway and Deep Space Transport

Phase 2


Complete Deep Space Transport and conduct Mars verification mission

Phases 3 and 4

Missions to the Mars system, the surface of Mars

Deep-Space Habitation Development Strategy

NextSTEP Habitation Overview

NextSTEP Phase 1: 2015-2016 Cislunar habitation concepts that leverage commercialization plans for LEO

FOUR SIGNIFICANTLY DIFFERENT CONCEPTS RECEIVED

Partners develop required deliverables, including concept descriptions with concept of operations, NextSTEP Phase 2 proposals, and statements of work.

NextSTEP Phase 2: 2016-2018

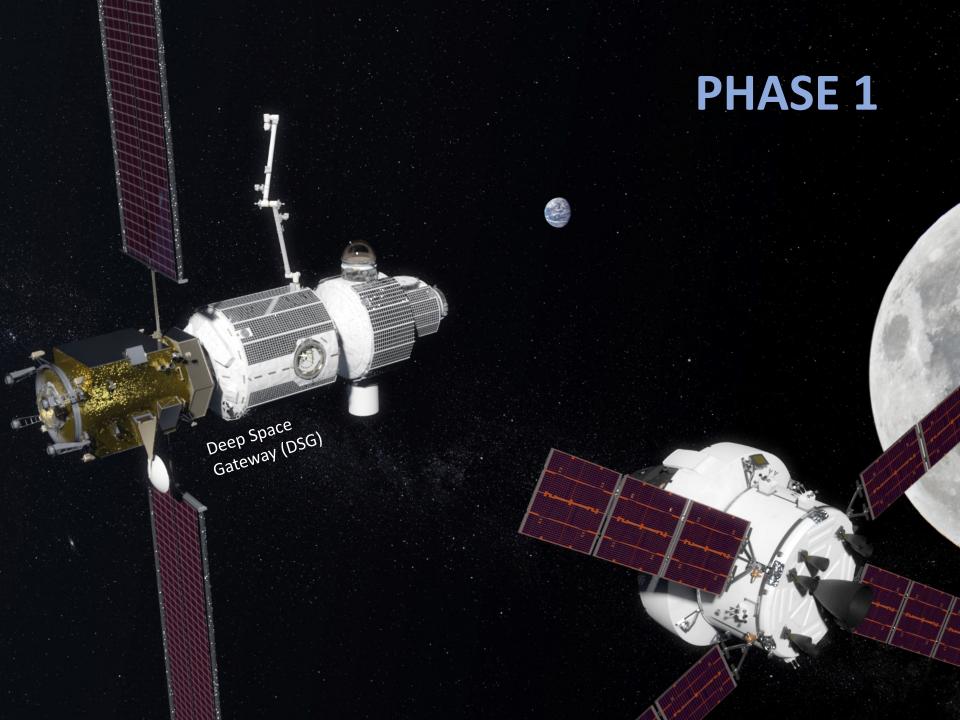
BOEING

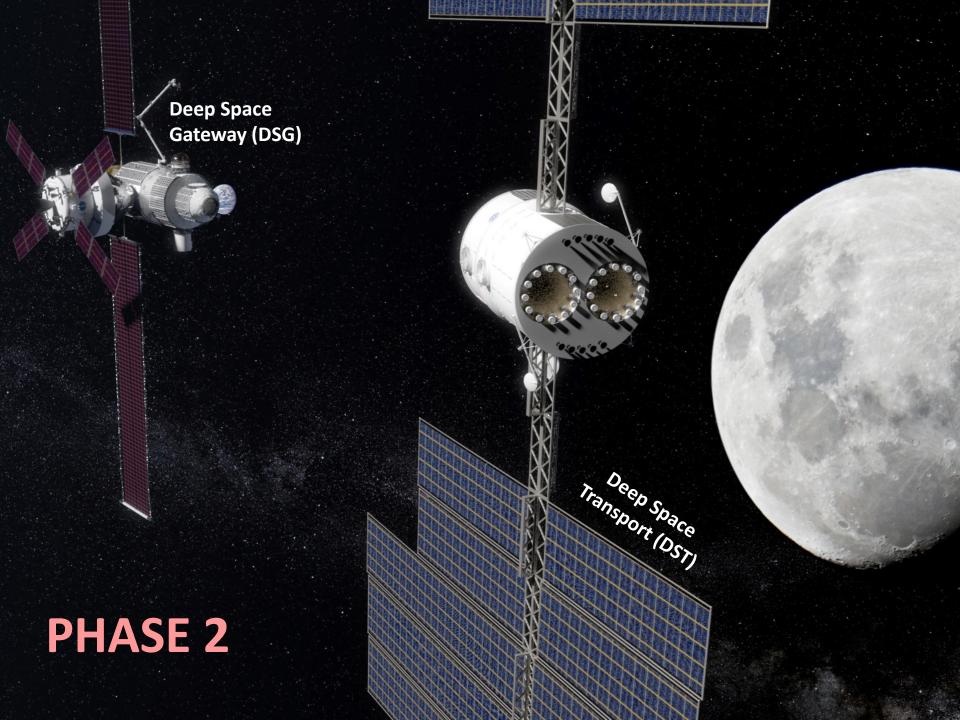
 Partners refine concepts and develop ground prototypes.

 NASA leads standards and common interfaces development.

ONE CONCEPT STUDY

Initial discussions with international partners





Define reference habitat architecture in preparation for Phase 3.

Phase 3: 2018+

- Partnership and Acquisition approach, leveraging domestic and international capabilities
- Development of deep space habitation capabilities
- Deliverables: flight unit(s)

In-Space Manufacturing (ISM) Path to Exploration

EARTH RELIANT PROVING GROUND EARTH INDEPENDENT

Cis-lunar

Asteroids

Mars

Earth-Based Platform

Certification &

GROUND-

BASED

- Inspection Process

 Design Properties
- Database
- Additive Manufacturing Automation
- Ground-based Technology Maturation & Demonstration

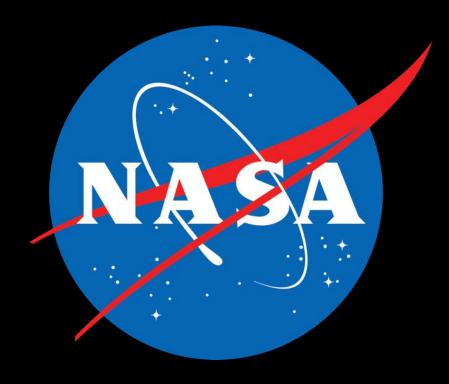
 AM for Exploration Support Systems (e.g. ECLSS) Design, Development & Test
 Additive Construction
 Regolith (Feedstock)

Space Launch System

ISS Test-bed Platform

- 3D Print Demo
- Additive

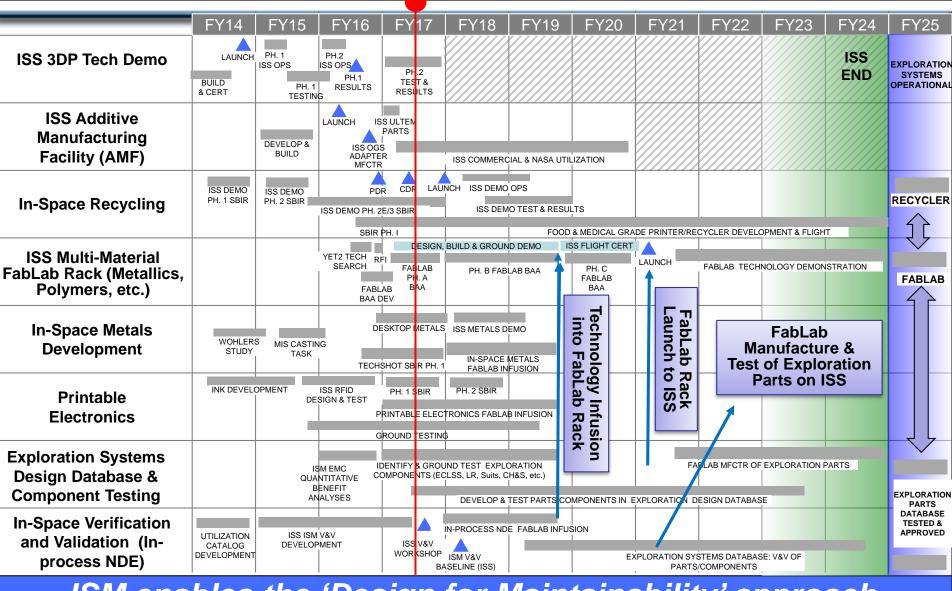
ISS


- Manufacturing Facility
- In-space Recycling
- In-space Metals
- Printable Electronics
- Multi-material Fab Lab
- In-line NDE
- External
- Manufacturing
- On-demand Parts Catalogue
 - Exploration Systems Demonstration and Operational Validation

Text Color Legend Foundational AM Technologies AM for Exploration **Planetary Surfaces Platform**

- Multi-materials Fab Lab (metals, polymers, automation, printable electronics)
- Food/Medical Grade Polymer
 Printing & Recycling
- Additive Construction
- Technologies
- Regolith Materials Feedstock
- AM Exploration Systems

In-space Robotic Manufacturing and Assembly Overview


<image/> <text></text>	Concept by Space Systems/Loral	<image/> <text></text>
Archinaut	Dragonfly	CIRAS
A Versatile In-Space Precision Manufacturing and Assembly System	On-Orbit Robotic Installation and Reconfiguration of Large Solid Radio Frequency (RF) Reflectors	A Commercial Infrastructure for Robotic Assembly and Services
Tipping Point Objective		
A ground demonstration of additive manufacturing of extended structures and assembly of those structures in a relevant space environment.	A ground demonstration of robotic assembly interfaces and additive manufacture of antenna support structures meeting EHF performance requirements.	A ground demonstration of reversible and repeatable robotic joining methods for mechanical and electrical connections feasible for multiple space assembly geometries.
Team		
Made In Space, Northrop Grumman Corp., Oceaneering Space Systems, Ames Research Center	Space Systems/Loral, Langley Research Center, Ames Research Center, Tethers Unlimited, MDA US & Brampton	Orbital ATK, Glenn Research Center, Langley Research Center, Naval Research Laboratory

In-Space Manufacturing (ISM) Program Timeline

ISM enables the 'Design for Maintainability' approach Required for Sustainable Exploration missions.

LIVING IN SPACE: SHORT DURATION HABITATION

Explore kilometers away from the destination habitat

- ✓ 2 crew for up to 2 weeks, contingency 4 crew for 1 week
- EVA pressure garment and PLSS <200 kg with dual-band radio avionics and radiation hardened bio-med sensors
- ✓ High frequency EVA (15 min. ingress-egress time)
- ✓ 4 years dormant before first use and between uses
- ✓ Design for reuse for 3 missions
- ✓ Lightweight exercise equipment under 25 kg

Challenges

Protect and support crew in deep space for up to 60 days Uncrewed operations during deployment and between uses

Earth - independent operations

Common Capabilities

4 crew for short durations (up to 60 days) Support autonomous mission operations with time delay Common, partially closed ECLSS under approx. 800 kg (3 years MTBF and 2 crew per torr of CO₂ removal) Autonomous rendezvous, prox ops, and docking Ability to be teleoperated with <0.5 s latency Communications to/from Earth and between elements Common, lightweight pressure vessel and common hatch 15 year lifetime with long dormancy periods Design for maintainability

Mars Ascent Vehicle

Logistics module to cislunar space

✓ Launched on either SLS and ELV launch vehicles

Logistics Module

✓ Carries up to 5-10 t of pressurized logistics

✓ 10-15 t total mass

Return crew to Mars orbit

- The second s
- ✓ 4 crew for up to 3 days flight duration
 ✓ Open loop ECLSS under approx. 400 kg
- ✓ 5 years dormant before use

Initial Cislunar Habitation

Support crew each year for short duration stays in cislunar space

- ✓ 4 crew for up to 60 days
- EVA pressure garment and PLSS <200 kg with dualband radio avionics and rad-hardened bio-med sensors
- ✓ High frequency EVA (15 min. ingress-egress time)
 - Lightweight exercise equipment under 25 kg
 - ✓ 1 year dormant before use
 - ✓ Up to 300 days dormant between uses

Mars Taxi

Transport crew between Mars orbit and Mars Moons

- ✓ 4 crew for up to 2.5 day crewed duration
- ✓ 560 days operational (uncrewed) at Mars
- 2 years dormant before use
- Up to 1.5 years dormant between uses

LIVING IN SPACE: LONG DURATION HABITATION

Challenges

Protect and support crew in deep space for up to 1100 days

Uncrewed operations during deployment and between uses

Reduced logistics and spares

Earth - independent operations

Phobos Habitat

Live and operate in microgravity at Phobos

4 crew for up to approx. 500 days
 48 m³ volume for logistics and spares
 Logistics Mass: 10.7 t
 EVA system with Phobos mobility and dust mitigation
 4-5 years dormant before use
 3 years dormant between uses

Common Capabilities

4 Crew for 500-1100 days Common pressure vessel 15 year lifetime with long dormancy periods Design for reusability across multiple missions 100 m³ habitable volume and dry mass < 22 t Autonomous vehicle health monitoring and repair Advanced Exploration ECLSS with >85% H₂O recovery and 50% O₂ recovery from reduced CO₂ ECLSS System (w/o spares): <5 t mass, <9 m² volume, <4 kW power Environmental monitoring with >80% detection rate without sample return 14-kW peak operational power and thermal management required Autonomous mission operations with up to 24 minute one-way time delay

Autonomous medical care, behavioral health countermeasures, and other physiological countermeasures to counteract long duration missions without crew abort

> Exercise equipment under 500 kg Provide 20-40 g/cm² of radiation protection EVA pressure garment and PLSS <200 kg Contingency EVA operations with 1 x 2-person EVA per month Communications to/from Earth and between elements

Mars Surface Habitat

Live and operate on the Mars surface in 1/3 g

- ✓ 4 crew for up to approx. 500 days
- ✓ 48 m³ volume for logistics and spares
- ✓ Logistics Mass: 10.7 t
- ✓ 4 years dormant before use
- ✓ 3-4 years dormant between uses
- EVA system with surface mobility, dust mitigation, and atmospheric compatibility

Transit Habitat

Live and operate in microgravity during trip to/from Mars

- ✓ 4 crew for up to 1,100 days
- ✓ 93 m³ volume for logistics and spares
- ✓ Logistics Mass: 21 t
- ✓ 4 years dormant before use and between uses