An Introduction to Observing System Simulation Experiments

Nikki Privé 5 April 2017

What is an OSSE?

An OSSE is a modeling experiment used to evaluate the impact of new observing systems on operational forecasts when actual observational data is not available.

- A long free model run is used as the "truth" the Nature Run
- The Nature Run fields are used to back out "synthetic observations" from all current and new observing systems.
- Suitable errors are added to the synthetic observations
- The synthetic observations are assimilated into a different operational model
- Forecasts are made with the second model and compared with the Nature Run to quantify improvements due to the new observing system

Types of OSSEs

- NWP OSSE
 - -Global OSSE
 - Regional OSSE
- Ocean / Coupled OSSE
- Chemistry, carbon, aerosol, OSSE
- Climate OSSE

– Plan design of climate observing network

Data Assimilation

Data Assimilation

- Statistically based
- Limited by computational demands
- Filters particular kinds of observation error
- Spreads information spatially and dynamically
- A new observation set will likely provide little improvement when added to the present observation network

Operational System versus Reanalysis

(口) (四) (三) (三) (三)

OSSEs vs. the Real World

Why do an OSSE?

- 1. You want to find out if a new observing system will add value to NWP analyses and forecasts
- 2. You want to make design decisions for a new observing system
- 3. You want to investigate the behavior of data assimilation systems in an environment where the truth is known

When not to run an OSSE

- When you can't model the phenomena you are interested in
- When you can't simulate your new observations
- When you can't assimilate your new observations

Construction of an OSSE

- Nature Run ("truth")
- Synthetic observations with errors
- Forecast model with data assimilation system
- Calibration and validation of the OSSE
- Experiment design

Nature Runs

- Nature Runs act as the 'truth' in the OSSE, replacing the real atmosphere.
- Usually, a long free (non-cycling) forecast from the best available model is used as the NR
- Must be able to realistically model phenomena of interest
- Preferably a different model base is used for the NR and the experimental forecast model to reduce incestuousness

GEOS-5 Nature Run

2 year, 7 km/72L, 30 minute resolution 15 aerosols, ozone, CO, CO2

Image courtesy: William Putman

Nature Run Validation

- Evaluate if NR is sufficiently realistic to yield meaningful results
- In addition to the phenomena of interest, the NR should realistically replicate fields needed to generate synthetic observations
- Can't validate everything; corollary don't expect a NR to come pre-validated for your needs

Synthetic Observations

Example of METEOSAT AMV observations at 0000 UTC 10 July

Real

Synthetic Observations

- Most conventional types interpolated from NR fields using spatio-temporal distribution of real observations as a basis
- Radiance observations similarly generated using radiative transfer model with NR fields as input
- Atmospheric motion vectors should be based on clouds and water vapor in NR
- New observing types need an observation operator both to create and to assimilate the synthetic data

Observation Errors

- Synthetic observations contain some intrinsic interpolation/operator errors, but less than real observations (usually)
- Synthetic errors are created and added to the synthetic observations to compensate
- Error is complex and poorly understood
 - Error magnitude
 - Biases
 - Correlated errors

Forecast Model Requirements

- Data Assimilation System must be able to ingest both current and new data types
- Forecast model ideally similar to an operational model
- Forecast model should be distinctly different from the model used to make the Nature Run
 - 'identical twin' cases use the same model
 - 'fraternal twin' cases use similar models

Calibration

- Adjust synthetic observations and their errors to increase realism of the OSSE in a statistical sense
 - Compare OSSE statistics to statistics using real data in the same DAS/forecast system
- Need to decide what statistical metrics to use for the calibration, depending on your needs
- Calibrating new observation types?
 - Find an analogous data type if possible

Criticisms of OSSEs

- Results only apply within the OSSE system no concrete connection to the real world
- Even the best OSSEs are far from perfect: incestuousness, difficulty in generating observations and errors, deficiencies of the Nature Run
- By the time the new instrument is deployed, both the global observing network and the forecast models/DAS will be different
- Examples of sloppy or unsuccessful OSSEs

Why believe OSSE results?

Adjoint Observation Impact

New observations can be put into context relative to existing observation impacts

Water Vapor

900

800

700

600

500

400

300

200

100

Ē

Pressure

MiSTIC Wind OSSE

Constellation of satellites of the CubeSat class carrying a MWIR spectrometer operating in the range 4.08-5.8 µm for frequent measurement of temperature and humidity profiles.

The wind profile is retrieved by assimilation of these frequent profiles.

The target spatial resolution is 2 to 4 km, and the frequency of sampling 1 to 2 h.

Global Modeling and Assimilation Office Goddard Space Flight Center National Aeronautics and Space Administration

Slide courtesy of Will McCarty

Forecast Skill – 500hPa Z Anomaly Correlation

Forecast skill improvement apparent - noted that improvement start within first day and remains

- Results consistently show improvement through the troposphere in midlatitudes
- Largest near surface in NH, consistent through column in SH

Slide courtesy of Will McCarty

Takeaways

- OSSEs can provide useful information about new observational types and the workings of data assimilation systems
- Careful consideration of research goals should guide each step of the OSSE process
- OSSEs are hard, good OSSEs are harder