RAISING THE ALBEDO OF 2010 GY6: FITTING ATPM TO WISE DATA
D. H. Wooden ${ }^{1}$, B. D. Rozitis ${ }^{2}$, J. D. Jefferson ${ }^{3}$, T. W. Nelson ${ }^{3}$, J. L. Dotson ${ }^{1}$
${ }^{1}$ NASA Ames Research Center, Moffett Field, CA 94035-0001, USA (diane.wooden@nasa.gov), ${ }^{2}$ The Open University, Milton Keynes, UK, ${ }^{3}$ University of California Santa Cruz, Astron. Dept. Santa Cruz, CA 95060, USA, ${ }^{4}$ University of Southern Maine, Phys. Dept., Portland, ME 04104, USA

Introduction: Near-Earth Asteroid 462775 (2010 GY6) is in the Apollo orbit-family with a 1.46 year orbital period. 2010 GY6 was measured by WISE and fitted with NEATM, yielding NEATM model parameters of $\mathrm{D}=1.1 \mathrm{~km}$, $\mathrm{pv}=0.028$ and eta $=2.3$ [1]. The NEATM-derived geometric albedo of 2010 GY 6 is lower than the surface of comet $67 \mathrm{P} / \mathrm{C}-\mathrm{G}$ [2]. The eta value is considerably higher than typical for its phase angle of 33° [3], indicating a cooler surface due to non-zero thermal inertia and/or surface roughness are important. If the thermal inertia and surface roughness are constrained by fitting the Advanced Thermophysical Model (ATPM [4]) to the WISE data, what would the resulting geometric albedo? We find $\mathrm{pv}=0.06-0.08$, in the same range as B- or C-type NEAs like Bennu or JU3.
ATPM fits to the WISE data: The WISE SEDs are fitted with ATPM (Fig. 1). The best-fit coupled parameters \{Diameter (D), Bond Albedo (A), thermal inertia (Γ), and surface roughness (area fraction)\} include $\mathrm{A}=0.025$, surface roughness $=1$, and $\Gamma \approx 900$. For a 2 -sigma 95% confidence level, $\Gamma \geq 500$; the chi-sq surface for the coupled parameters $\{\mathrm{A}, \Gamma\}$ is in Fig. 1 (right). NEATM is $\{\mathrm{A}, \Gamma\}=[0,0.025]$. The Diameter (D) is correlated with $\{A, \Gamma$, surface roughness $\}$ so additional constraints on A are needed; the constraints for A come from the visible light absolute magnitude (H), which depends on 1-A. Phase curve analyses: The phase curve fitted with the H-G1,G2-relation varies depending on the geometric albedo $\mathrm{pv} ; \mathrm{pv}=\mathrm{A} / \mathrm{q}$ where A is the thermal model input and q is the integral under the phase curve. We fitted phase curve from MPC data using $\mathrm{G} 1, \mathrm{G} 2=(0.8228,0.10938)$ for C-type [5], yielding $\mathrm{H}=19.05 \mathrm{mag}, \mathrm{q}=0.359$, $\mathrm{pv}=0.07$.
Conclusions: We combine the constraints from ATPM fits and phase curve analysis (Fig. 2) [5]. 2010 GY6 is characterized by ATPM: Bond Albedo $\mathrm{A}=0.025$, Diam $=0.850^{-0.08}{ }_{+0.02}(\mathrm{~km})$, and Γ $=900^{-400}+>100 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~K}^{-1} \mathrm{~s}^{-0.5}$, surface roughness fraction 0.5 ; phase curve fitting yields $\mathrm{H}=19.05$ mag using C-taxonomy's G1,G2 slope parameters [5]. If $\mathrm{A}=0.021^{+0.005}{ }_{-0.001}$, the geometric albedo is pv $=0.058^{+0.14}{ }_{-0.02}$ so $\mathrm{D}=0.850^{-0.08}{ }_{+0.02}(\mathrm{~km})$.

Interpretation: 2010 GY6's Bond albedo (A 2.5%), thermal inertia ($\Gamma>400$) and geometric albedo $\mathrm{pv} \sim 0.06$ are similar to 1999 JU 3 , so by inference 2010 GY6 is C-taxonomy [6], also consistent with its phase curve. Modeling thermal inertia of NEA surfaces in terms of the spacing between surface regolith grains implies a grain size of $>\sim 20 \mathrm{~mm}$ for $\Gamma \approx 1000 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~K}^{-1} \mathrm{~s}^{-}$ ${ }^{0.5}$ [7], which is reminiscent of the 'gravelly' surface of Itokawa [8]. ATPM modeling of other low $p v$ and high eta NEAs in the WISE data, akin to 2010 GY6, also may reveal albedos nearer 0.05 and thermal inertias nearer 1000 [SI units].

Figure 1. (Left) 2010 GY6 ATPM model fits to WISE. (Right) ATPM Chi-square surface for correlated parameters $\{\Gamma, \mathrm{A}\}$, with 1σ contour $\Gamma=500$ to >1000 [SI units] and $\mathrm{A}=0.025$, labeled 4.81 or ' .81 ' at the left boundary of dark purple.

Figure 2. Best diameter constraints for ATPM and H are $\mathrm{D}=0.850^{-0.08}{ }_{+0.02}(\mathrm{~km})$, shown in the third panel (Bond $\mathrm{A}=0.025$) where the green-yellow parallelogram overlaps with the ATPM diameters; G (left y -axis) and Γ (right y -axis).
Acknowledgments: We acknowledge support of NASA's NEO program, \& ATAP at NASA Ames.

References:

[1] Mainzer, A., et al. (2011) ApJ, 743, 156. [2] Fillachione, G., et al. (2016), Icarus, 274, 334. [3] Trilling, D. E., et al. (2016) AJ, 152, 172. [4] Rozitis, B., Green, S. (2011) MNRAS, 415, 2042.
[5] Penttila, A., et al. (2016) P\&SS, 123, 11.
[6] Müller, T. G., et al. (2011) A\&A, 525, A145.
[7] Gundlach, B., Blum, J. (2013) Icarus, 223, 479.

