

# Extreme Environments Capabilities at Glenn Research Center

# Venus and Beyond

Presented by: Jeff Balcerski
Tibor Kremic
Lori Arnett
Dan Vento
Leah Nakley

Glenn Research Center, Cleveland, OH



# Extreme Environments Capabilities at Glenn Research Center

# Venus and Beyond

- 1. Venus atmospheric and surface investigations
  - A (brief) introduction to GEER
  - GEER status
  - Upgrades in progress
- 2. Other extreme environments capabilities



# Venus in a Bottle:

# The Glenn Extreme Environment Rig (GEER)

# Two facilities combined:



- A. 10 ton pressure vessel
  - Certified to 100 bar at 500° C
  - Corrosion resistant 304 SS
  - Many user ports
  - $\sim 1 \text{ m}^3 \text{ volume}$
- B. Programmable gas bank
  - Configurable via visual interface
  - Controlled to PPM (or better)
  - 9 independent gas streams



# GEER simulates atmospheres

#### **Current capability**

- Temperature: ambient to 500 degree C
- Virtually any chemistry accurately
- Large physical size (3' dia. x 4' long inside)

Pressure: .001 to 100 bar

Indefinite duration

## Science, technology and/or mission applications

Venus (environment and chemistry – surface to above clouds)

Saturn, Jupiter, Uranus, moons (chemistry and temp / pressure within rig limits)

Exoplanets – Chemistry for science and model inputs





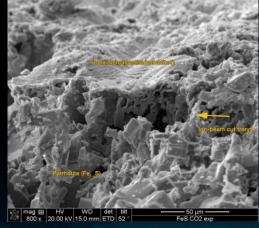




Venus Flagship STDT Report NRC

NRC 2013 Planetary Decadal Survey




Super-Earth exoplanet GJ 1214b (Image from ESA VLT)

Direct applications for ROSES science, instrument and technology development, Discovery, New Frontiers, and Flagship missions









# Recent Accomplishments

- Over 90 days of operation at Venus surface conditions
- Extensive catalog of performance of engineering materials created
- Geological science investigation for atmosphere-surface interaction
- Successful operation of data feedthroughs
- Initial journal publications in preparation



# New Capabilities and Upgrades in Progress





- General purpose interior probe
- Optical window
- Co-located mass spectrometer
- In-line gas chromatograph
- In-line FTIR
- Improved thermal control
- More precise control over gas injection



### GEER available for users

- Science and engineering investigations
- GEER team will work with users to meet schedule and technical requirements and provide cost estimates
- Customization of vessel will require proposal-supplied funds
- All test runs are coordinated to maximize science and technical return
  - Can support several experiments at the same time



### GEER available for users

- Customer interface document being finalized
- Website: <a href="https://geer.grc.nasa.gov/">https://geer.grc.nasa.gov/</a>
- Primary contact is Dan Vento at: daniel.m.vento@nasa.gov

Currently seeking volunteers for science advisory board contact Jeff Balcerski (jeffrey.balcerski@nasa.gov)



# Out of the Frying Pan... And Into the Freezer

# Cryogenics Facilities at GRC



- Maintain 1x10<sup>-6</sup> torr
- Liquid He, H<sub>2</sub>, N<sub>2</sub>, Ar, O<sub>2</sub>, CH<sub>4</sub>
- Can accommodate a 1.1 x 1.6 m test article
- Ascent profiling:  $\overline{760}$  to  $1 \times 10^{-2}$  torr in 2 min.
- Programmable thermal shroud: 100 to 390 K to simulate diurnal cycles
- Can emulate conditions of Titan's lakes



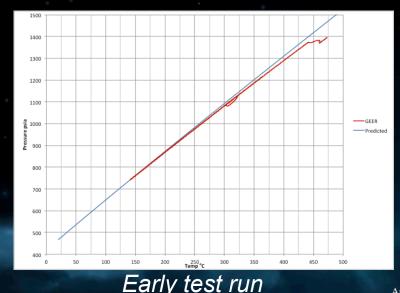
# Cryogenics Facilities at GRC



Numerous pressure vessels ranging from 0.2 ft3 (0.006 m3) to 58 ft3 (1.6 m3) with pressures up to 500 psi (34.5 bar)

• Primary contact is Lori Arnett at: lori.arnett@nasa.gov

Backup Slides


# Glenn Extreme Environment Rig (GEER) Specs



- 304SS vessel 3' dia x 4' long inside dimensions (28.3 ft³ or .8 m³)
- Max conditions pressure 103 bar at 500 degree C
- Eight ports including a couple at opposing ends
- Nine separate gas streams
  - Each of these can handle pure or mixed gases
  - Ppm accuracy or better
- Re-boost pumping system
- Supporting infrastructure sized to handle multiple or a much larger chamber if ever needed
- Currently verify chemistry through mass spectroscopy (regular sample)

| Gas | Moles      | Grams       |
|-----|------------|-------------|
| CO2 | 1237.1107  | 54445.24191 |
| N2  | 44.8693    | 1256.96857  |
| SO2 | 0.2307564  | 14.782255   |
| HCI | 0.00051279 | 0.0186954   |
| HF  | 0.00006409 | 0.001282    |
| ocs | 0.00564071 | 0.338843    |
| СО  | 0.02948554 | 0.825919    |
| H2O | 0.0384594  | 0.692885    |

Tested with predicted chemistry near Venus surface



# Operating Details

- Temperature ramp rate 7 degree C /hour
- Average temperature controlled to 1 degree C
- Pressure can be boosted
- Large volume may offer opportunity to explore stratification