WATER FOR AGRICULTURAL SMALLHOLDERS IN WEST AFRICA:

THE IMPACT OF CLIMATE
CHANGE ON WATER BODY
DYNAMICS IN THE TAHOUA
REGION OF NIGER

Kelsey E. Herndon
Rebekke Muench
Emil Cherrington
Robert Griffin

January 9, 2016

ation a hierosin gross gar

Overview

- Introduction to agriculture in the Sahel
- Conflicts over water in the Sahel
- Description of the study area
- Specific Objectives
- Methods
- Results
- Implications
- Limitations
- Future Directions

Photo credit from Open Access Wikimedia Commons:

https://commons.wikimedia.org/wiki/File:Cattle_mare_de_kissi.jpg

Objectives

- Create a time series of water bodies for the study area
- Identify the seasonal character of water bodies
- Quantify the responsiveness of surface water extent to changes in precipitation

Study Area

Study Area, Tahoua Region, Niger

Climate Patterns: Precipitation

- Overall patterns of precipitation:
 - Annual precipitation has increased about Imm/ year since 1981

Mean Daily Rainfall for Basin 2, Tahoua Region, Niger

Climate Patterns: Temperature

- General temperature trends (1981 2016):
 - Miniscule increase in max temperature (<.001 degree C)
 - Miniscule increase in min temperature (<.001 degree C)

Daily Minimum and Maximum Temperature, Basin 2, Tahoua Region, Niger

Data

- Landsat 4, 5, 7, and 8 surface reflectance
 - United States Geological Survey (USGS) Earth Resources
 Observation and Science (EROS) Center Science Processing
 Architecture (ESPA)¹
- Drainage basin boundary
 - Global Drainage Basin Dataset (GDBD) Center for Global Environmental Research in the National Institute for Environmental Studies (Japan)²
- Meteorological variables
 - CHIRPS daily precipitation data³

Methods: Water Body Surface Area

- Modified Normalized Difference Water Index (MNDWI)¹
 - MNDWI = $\frac{Green SWIR}{Green + SWIR}$
 - Landsat 8 Operational Land Imager (OLI)
 - Green = band 3
 - SWIR = band 6
 - Landsat 4 Thematic Mapper (TM), 5 TM, and 7 Enhanced Thematic Mapper + (ETM+)
 - Green = band 2
 - SWIR = band 5
- Threshold of -.2
 - >-.2 = water
 - < -.2 = non-water

Methods: Climate Elasticity

- Non-parametric estimator of climate elasticity¹:
 - $\varepsilon_P = \text{median}(\frac{Q_t \bar{Q}}{P_t \bar{P}} \frac{\bar{P}}{\bar{Q}})$
 - ε_P is precipitation elasticity
 - Q_t is surface area at time t
 - P_t is precipitation at time t
 - $ar{Q}$ is mean annual surface area
 - \bar{P} is mean annual precipitation
- Results tell us how sensitive water surface area is to changes in precipitation (% change in water surface area with a 1% change in precipitation)

Results: Seasonal Pattern

- Surface area tracks with precipitation
- Peak surface area occurs during the rainy season, between August and October
- Minimum surface area occurs immediately prior to the start of the rainy season, in May or June
- Surface area can vary more than 10 fold over the course of the water year

Precipitation and Surface Water Area

Results: Inter-Annual Pattern

- Linear regression results (October surface area, precipitation)
 - Basin: R = .8154, $R^2 = .6650$, p = .02537
 - Lake: R = .8081, $R^2 = .6530$, p = .00840
 - Ponds: R = .9034, $R^2 = .8162$, p = .00083

Precipitation and October Surface Area (Basin)

Precipitation and October Surface Area (Ponds)

Results: Climate Elasticity

- Precipitation:
 - Basin = 2.42
 - Lake = 2.43
 - Ponds = 2.09
- Precipitation elasticity agrees with global studies¹

Implications

- Water bodies in this region are very responsive to changes in precipitation
- Results could be used in designing a forecasting system that could help pastoralists in locating water bodies, allocating water resources, and designing efficient migration routes
- Could help government agencies in planning and managing potential conflict associated with water body scarcity: e.g. years with less rain will have more scarce surface water

Limitations

- Validation
- Resolution
- Uneven time series
- Limitations of climate elasticity

Future Directions

- Validation
- Develop a water body forecasting system or near-real time monitoring system
- Evaluate changes in turbidity and vegetation health
- Evaluate the impact of changes in landcover
- Incorporate Sentinel I and 2 data

QUESTIONS?