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Introduction

€ The Space Launch System (SLS) Ascent Flight Control System
(FCS) is a primary focus of the Control System Design &

Analysis Branch at the Marshall Space Flight Center (MSFC)

* Vehicle Critical Design Review (CDR) completed in 2015

« First Vehicle Verification Analysis Cycle (VAC-1) completed in 2016

» First unmanned flight, Exploration Mission One (EM-1) with Interim
Cryogenic Propulsion Stage (ICPS) in 2018

€ The SLS FCS is largely a classically-based algorithm,
leveraging from the experience of several manned space flight

programs
« Saturn V , Shuttle, Ares |-X , Ares |

€4 An innovative Adaptive Augmenting Control (AAC) algorithm
has been developed for NASA’s Space Launch System (SLS)
family of launch vehicles and implemented as a baseline part
of its flight control system (FCS)

¢ AAC has three summary-level design objectives:
1. “Do no harm”; return to classic control design when adaptation
is not needed
2. Increase responsiveness to recover pointing error within ability
of vehicle control
3. Reduce responsiveness to mitigate effects of undesirable
dynamics (i.e., control-structure interaction)
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Motivation for Advanced Control: GN&C Opportunities

GN&C issues are rarely the cause for launch vehicle failures. However, a review of historical
launch vehicle data from 1990 to 2002 by J. Hanson (NASA MSFC) revealed that 41% of RLV

failures might have been mitigated by advanced GN&C technologies.

¢ 1995: Conestoga launch vehicle was lost due to a mis-
estimated flex mode frequency
* Full integrated vehicle ground vibration test not performed
* Limited robustness of control filters to flex mode knowledge
* Lost control due to using up the limited supply of blow-down
hydraulic fluid from excessively controlling the mode

¢ 1994: First Pegasus XL was lost due to flight control
being tuned for poor aerodynamic modeling

¢ SLS Adaptive Augmenting Control addresses key
launch vehicle uncertainties using a forward-gain
multiplicative approach
* Increasing the gain can improve the tracking error

— Useful for extreme discrete-event disturbances, or slow tracking
insufficiencies

* Reducing the gain can mitigate high frequency control structure
interaction

— Large flexible structure with limited pre-flight testing
» Adaptation only when outside the anticipated design envelope

— Augmentation is paramount: build upon the well established classical
launch vehicle control design and analysis approach

Pegasus XL Air Launch




Components of SLS Adaptive Augmenting Control
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Evolution of the Adaptive Law

€ The algorithm has evolved over time Ares | - Early SLS . _ _
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Major Developments in SLS Adaptive Control: Timeline

SLS DAC-1 (Design & Analysis Cycle)

« AAC implemented in flight software based on original Ares | Whitepaper

SLS DAC-2

» Began running AAC in Monte Carlo analysis, algorithm in baseline simulations
SLS DAC-2R (PDR)

* Flight test stressing cases developed to demonstrate algorithm
- Subsequent algorithm modifications added for improved performance & robustness

» F/A-18 flight test, support across agency, AAC baselined
SLS DAC-3

» Applied Describing Function (DF) techniques to analyze fundamental behavior
- DF analysis provides quantification of robustness to limit cycle phenomena, means to optimally select parameters, and
yields significant insight into dynamic behavior

» Began Joint SLS/NESC Flight Readiness & Stability Review with external support partners

SLS DAC-3R (CDR)

» Performed large set of analyses with matured AAC algorithm and flight models

SLS/NESC “Stability of the SLS FCS with Adaptive Augmentation” Report

» Consolidation of comprehensive set of analyses of AAC

« Recommended minor algorithm modifications to improve traceability to Lyapunov theory

SLS VAC-1

* Incorporated SLS/NESC recommended modifications, re-performed and finalized program documentation
of pertinent analyses to demonstrate flight readiness

» Performed code & algorithm peer reviews and finalized SLS Flight Control System Flight Software

Current to FRC (Flight Readiness Cycle)

« Final flight vehicle parameter development, repeat key analyses as models update




NASA Dryden/MSFC/NESC/STMD F/A-18 Flight Test

4 PDR AAC Algorithm (in C-code Standalone FSW prototype form) was flown on the
NASA Dryden F/A-18 FAST testbed which, with different control surfaces, emulated
the SLS pitch attitude dynamics under ~20 stressing scenarios
« Employed NDI approach to emulate the slower launch vehicle attitude dynamics & control
~100 flight trajectories across a five flight campaign
The three objectives of AAC were demonstrated in all cases
» Special test case with actual F/A-18 structural mode demonstrated suppression of airframe-control limit
cycle oscillation
» Some exploration of manual steering interactions with adaptive controller
€ No significant findings or adjustments to algorithm from/during actual test
* Pre-flight test development of stressing case scenarios provided a lot of insight (with external exposure)
into the response characteristics of AAC, implementation, and scope of needed analysis activities
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F/A-18 AAC Test: AAC Suppresses F/A-18 Mode of Vibration

Objective: Mitigate Unstable Mis-Modeled Internal Dynamics via AAC spectral damper action

F/A-18 Mode Sys ID Test: Reconstruction based on a 60 sec multi-sine input with frequencies

centered at anticipated fir
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F/A-18 Unstable Mode Recovery Test : AAC Mitigates Unstable Airframe Mode
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- Baseline F/A-18 notch filters removed & SLS control filters adjusted to create a closed loop
instability of the ID-ed flex mode

- Instability reached until rate limit cycle, AAC reduces gain, yielding a smaller limit cycle amplitude

- First known suppression of unstable mode on manned spacecraft
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AAC Impact to Non-Failure Design Envelope is Negligible

€ Gain activity is present during non-failure Monte Carlo analysis
 Result of aero dispersions during max-q and booster dispersions during tailoff
€ AAC results in minor impact to response across design envelope, slight
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Joint SLS/NESC Assessment: Stressing Cases

€ 40+ stressing cases are maintained in hi-fi 6-DOF to demonstrate algorithm objectives
and explore conditions that might break the algorithm
€ Scenarios largely represent mis-modeling of dynamics or scenarios in which significant

degradation to stability margins and controllability are present
* Assigning probabilities to such unknown-unknowns is difficult and qualitative at best (hence single runs)

€ Stressing cases readily demonstrates the ability of and builds confidence in the
robustness/performance of the AAC algorithm in such scenarios
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Joint SLS/NESC Assessment: Time Domain Stability Margins

€ Time domain stability margins were extracted from 6-DOF by applying fixed
gain & time delays incrementally about the expected point of instability to
nonlinear 6-DOF simulations
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€ The system with AAC off demonstrated margins agree in time & freq domain

« Verifies the applicability of the LTI frequency domain approach to the nonlinear simulation

€ The system with AAC demonstrates its objectives
* Demonstrates that gain margins were always increased up to 6 dB limit
« Amount of gain increase constrained by nonlinearities (TVC limits, nonlinear slosh

damping) and time varying nature of the system (eg. low damping slosh near crossovers)



NESC Assessment: Application of Lyapunov theory to SLS AAC

Under NESC Assessment Tl-14_00964, Dr. Mark Balas (ERAU) evaluated the current
AAC architecture and tailored existing adaptive control theory to provide improved
traceability to Lyapunov-based stability proofs

Result applies existing Lyapunov adaptive control theory to the existing “up-gain”
portion of the AAC algorithm, from which came a few recommended changes

» Adaptive gain must be computed from the same signal to which it will be applied

» Use PD terms to drive AAC gain, apply AAC gain to PD terms only

* Apply PID integrator to PD terms instead of the traditional P term, add to gained signal
- (adaptive disturbance mitigation control form)
* Error signal must be squared (F/A-18 Tested PDR design)

Algorithm modifications were incorporated following NESC Assessment, and
relevant analysis re-conducted to verify and accept changes

’ DF anaIyS|S & parameter re-tunlng Fig 2: Alternate AAC Architecture — 2 (“up-gain” only)
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AAC DF-based Frequency Response Techniques Demonstrate

Expected Response, Determines Best parameters

€ Describing function & other nonlinear freq domain methods developed for AAC
* Derived from numerical sinusoidal inverse describing function (SIDF) techniques
* AAC is cast as an amplitude and frequency dependent nonlinear filter
* When operating as designed, AAC acts as a near zero-phase low-pass loop shaper
* The DF-in-the-loop approach can be used to show approx. nonlinear gain & phase margin*
* Frequency separation principles used to eliminate limit cycling risk and simplify gain tuning
€ Nonlinear frequency response techniques provide criteria for robust selection of

parameters
AAC Describing Function AAC Describing Function-in-loop
— ! — pitch channel pitch channel (DF-in-loop)
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Concluding Remarks

Classical, flight proven, control design approaches have been applied to
produce the SLS Flight control system: a generalized, well-characterized, and

robust set of algorithms

The innovative Adaptive Augmenting Control (AAC) component of the FCS has
been thoroughly simulated and analyzed, flight tested, independently (NESC)
reviewed, and ready for the first test flight of SLS

AAC will extend the robustness of the basic control system for the first test
flight and beyond
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