

Development and Flight Readiness of the SLS Adaptive Augmenting Control System

John Wall (NASA MSFC / Dynamic Concepts, Inc. / Jacobs ESSSA Group)
Aerospace Control & Guidance Systems Committee #119
29-31 March 2017, Dayton, OH

Introduction

- ◆ The Space Launch System (SLS) Ascent Flight Control System (FCS) is a primary focus of the Control System Design & Analysis Branch at the Marshall Space Flight Center (MSFC)
 - Vehicle Critical Design Review (CDR) completed in 2015
 - First Vehicle Verification Analysis Cycle (VAC-1) completed in 2016
 - First unmanned flight, Exploration Mission One (EM-1) with Interim Cryogenic Propulsion Stage (ICPS) in 2018
- ◆ The SLS FCS is largely a classically-based algorithm, leveraging from the experience of several manned space flight programs
 - Saturn V , Shuttle, Ares I-X , Ares I
- ◆ An innovative Adaptive Augmenting Control (AAC) algorithm has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS)
- **♦ AAC has three summary-level design objectives:**
 - "Do no harm"; return to classic control design when adaptation is not needed
 - Increase responsiveness to recover pointing error within ability of vehicle control
 - 3. Reduce responsiveness to mitigate effects of undesirable dynamics (i.e., control-structure interaction)

Motivation for Advanced Control: GN&C Opportunities

GN&C issues are rarely the cause for launch vehicle failures. However, a review of historical launch vehicle data from 1990 to 2002 by J. Hanson (NASA MSFC) revealed that 41% of RLV failures might have been mitigated by advanced GN&C technologies.

- 1995: Conestoga launch vehicle was lost due to a misestimated flex mode frequency
 - Full integrated vehicle ground vibration test not performed
 - Limited robustness of control filters to flex mode knowledge
 - Lost control due to using up the limited supply of blow-down hydraulic fluid from excessively controlling the mode
- 1994: First Pegasus XL was lost due to flight control being tuned for poor aerodynamic modeling
- SLS Adaptive Augmenting Control addresses key launch vehicle uncertainties using a forward-gain multiplicative approach
 - Increasing the gain can improve the tracking error
 - Useful for extreme discrete-event disturbances, or slow tracking insufficiencies
 - Reducing the gain can mitigate high frequency control structure interaction
 - Large flexible structure with limited pre-flight testing
 - Adaptation only when outside the anticipated design envelope
 - Augmentation is paramount: build upon the well established classical launch vehicle control design and analysis approach

Components of SLS Adaptive Augmenting Control

Update Law

- (1) No adaptation when not needed
 - Unforced solution returns to equilibrium state (unity gain)

Stay the course

- (2) Increased response driven by reference model error
 - Simple onboard math model indicates expected launch vehicle motion
 - Model compared with actual motion, produces error, and increases control system response

- (3) Decreased response driven by spectral damper power estimator
 - Measures thrust vector activity in specific frequency band
 - Produces an estimate of the squared power to effect decreased system response

120

time [s]

Increase Gain

Evolution of the Adaptive Law

The algorithm has evolved over time

- Maintain performance
- Increase simplicity
- Mitigate failure modes
- Enhance analytical tractability

◆ The current version of the algorithm is essentially an input-limited lowpass filter with a bias of 1

- Critical innovations in design and implementation for flight software
- Easier to analyze and predict performance using frequency-domain techniques
- Up-gain portion links to Lyapunov stability theory

Ares I - Early SLS

Nonlinear limiting of adaptive portion of gain

$$\dot{k}_a = \left(\frac{k_{max} - k_a}{k_{max}}\right) ae_r^2 - \alpha k_a y_s - \beta (k_T - 1)$$

F/A-18 Test - SLS PDR

Total gain with input limiting and output saturation

$$\dot{k}_T = p_{hi}(k_T)ae_r^2 - p_{lo}(k_T)\alpha y_s - \beta(k_T - 1)$$

SLS CDR

Output-biased filter with input saturation

$$k_T = H_{AAC}(s) \operatorname{sat}_{k_0}^{k_{\text{max}}} \left\{ a \left(H_{EF}(s) e_r^2 \right)^{\frac{1}{2}} - \alpha y_s + 1 \right\}$$

SLS VAC-1

Symmetric Formulation,

Up-gain portion is Lyapunov supported

$$k_{T} = H_{AAC}(s) \operatorname{sat}_{k_{\min}}^{k_{\max}} \{K_{e}y_{e} - K_{s}y_{s} + 1\}$$

$$\dot{\omega}_{AAC} = \dot{\omega}_{PD} - \dot{\omega}_{g}$$

$$y_{e} = H_{EF}(s) (H_{EW}(s)\dot{\omega}_{AAC})^{2}$$

$$y_{s} = H_{LP}(s) (H_{HP}(s)\dot{\omega}_{AAC})^{2}$$
*final form similar to 1960s-era

*final form similar to 1960s-era forward gain adaptive approaches

Major Developments in SLS Adaptive Control: Timeline

◆ SLS DAC-1 (Design & Analysis Cycle)

AAC implemented in flight software based on original Ares I Whitepaper

♦ SLS DAC-2

Began running AAC in Monte Carlo analysis, algorithm in baseline simulations

◆ SLS DAC-2R (PDR)

- Flight test stressing cases developed to demonstrate algorithm
 - Subsequent algorithm modifications added for improved performance & robustness
- F/A-18 flight test, support across agency, AAC baselined

♦ SLS DAC-3

- Applied Describing Function (DF) techniques to analyze fundamental behavior
 - DF analysis provides quantification of robustness to limit cycle phenomena, means to optimally select parameters, and yields significant insight into dynamic behavior
- Began Joint SLS/NESC Flight Readiness & Stability Review with external support partners

◆ SLS DAC-3R (CDR)

Performed large set of analyses with matured AAC algorithm and flight models

SLS/NESC "Stability of the SLS FCS with Adaptive Augmentation" Report

- Consolidation of comprehensive set of analyses of AAC
- Recommended minor algorithm modifications to improve traceability to Lyapunov theory

SLS VAC-1

- <u>Incorporated SLS/NESC recommended modifications</u>, re-performed and finalized program documentation of pertinent analyses to demonstrate flight readiness
- Performed code & algorithm peer reviews and finalized SLS Flight Control System Flight Software

Current to FRC (Flight Readiness Cycle)

· Final flight vehicle parameter development, repeat key analyses as models update

NASA Dryden/MSFC/NESC/STMD F/A-18 Flight Test

- ◆ PDR AAC Algorithm (in C-code Standalone FSW prototype form) was flown on the NASA Dryden F/A-18 FAST testbed which, with different control surfaces, emulated the SLS pitch attitude dynamics under ~20 stressing scenarios
 - Employed NDI approach to emulate the slower launch vehicle attitude dynamics & control
- ◆ ~100 flight trajectories across a five flight campaign
- **♦** The three objectives of AAC were demonstrated in all cases
 - Special test case with actual F/A-18 structural mode demonstrated suppression of airframe-control limit cycle oscillation
 - Some exploration of manual steering interactions with adaptive controller
- ◆ No significant findings or adjustments to algorithm from/during actual test
 - Pre-flight test development of stressing case scenarios provided a lot of insight (with external exposure) into the response characteristics of AAC, implementation, and scope of needed analysis activities

F/A-18 AAC Test: AAC Suppresses F/A-18 Mode of Vibration

<u>Objective</u>: Mitigate Unstable Mis-Modeled Internal Dynamics via AAC spectral damper action <u>F/A-18 Mode Sys ID Test</u>: Reconstruction based on a 60 sec multi-sine input with frequencies centered at anticipated first fuselage mode

F/A-18 Unstable Mode Recovery Test: AAC Mitigates Unstable Airframe Mode

- Baseline F/A-18 notch filters removed & SLS control filters adjusted to create a closed loop instability of the ID-ed flex mode
- Instability reached until rate limit cycle, AAC reduces gain, yielding a smaller limit cycle amplitude
- First known suppression of unstable mode on manned spacecraft

AAC drops gain to reduce the limit cycle amplitude

AAC Impact to Non-Failure Design Envelope is Negligible

Gain activity is present during non-failure Monte Carlo analysis

Result of aero dispersions during max-q and booster dispersions during tailoff

▶ AAC results in minor impact to response across design envelope, slight

improvement if any

Joint SLS/NESC Assessment: Stressing Cases

- 40+ stressing cases are maintained in hi-fi 6-DOF to demonstrate algorithm objectives and explore conditions that might break the algorithm
- Scenarios largely represent mis-modeling of dynamics or scenarios in which significant degradation to stability margins and controllability are present
 - Assigning probabilities to such unknown-unknowns is difficult and qualitative at best (hence single runs)
- Stressing cases readily demonstrates the ability of and builds confidence in the robustness/performance of the AAC algorithm in such scenarios

Joint SLS/NESC Assessment: Time Domain Stability Margins

◆ Time domain stability margins were extracted from 6-DOF by applying fixed gain & time delays incrementally about the expected point of instability to

nonlinear 6-DOF simulations

- ◆ The system with AAC off demonstrated margins agree in time & freq domain
 - Verifies the applicability of the LTI frequency domain approach to the nonlinear simulation
- **♦** The system with AAC demonstrates its objectives
 - Demonstrates that gain margins were always increased up to 6 dB limit
 - Amount of gain increase constrained by nonlinearities (TVC limits, nonlinear slosh damping) and time varying nature of the system (eg. low damping slosh near crossovers)

NESC Assessment: Application of Lyapunov theory to SLS AAC

- Under NESC Assessment TI-14_00964, Dr. Mark Balas (ERAU) evaluated the current AAC architecture and tailored existing adaptive control theory to provide improved traceability to Lyapunov-based stability proofs
- Result applies existing Lyapunov adaptive control theory to the existing "up-gain" portion of the AAC algorithm, from which came a few recommended changes
 - Adaptive gain must be computed from the same signal to which it will be applied
 - Use PD terms to drive AAC gain, apply AAC gain to PD terms only
 - Apply PID integrator to PD terms instead of the traditional P term, add to gained signal
 –(adaptive disturbance mitigation control form)
 - Error signal must be squared (F/A-18 Tested PDR design)
- Algorithm modifications were incorporated following NESC Assessment, and relevant analysis re-conducted to verify and accept changes
 - DF analysis & parameter re-tuning
 - Stressing cases demonstration
 - Time Domain Stability Margins
 - Circle Criterion: Gain Limits

Guidance
Command θ_C , $d\theta_C$ PD Control

UPD

UPD

U=d ω_C Plant

UA

Control command: $u = k_T(e_{PD}) e_{PD} + u_I + d\omega_{BIAS}$

Fig 2: Alternate AAC Architecture – 2 ("up-gain" only)

AAC DF-based Frequency Response Techniques Demonstrate Expected Response, Determines Best parameters

- ◆ Describing function & other nonlinear freq domain methods developed for AAC
 - Derived from numerical sinusoidal inverse describing function (SIDF) techniques
 - AAC is cast as an amplitude and frequency dependent nonlinear filter
 - When operating as designed, AAC acts as a near zero-phase low-pass loop shaper
 - The DF-in-the-loop approach can be used to show approx. nonlinear gain & phase margin*
 - Frequency separation principles used to eliminate limit cycling risk and simplify gain tuning
- Nonlinear frequency response techniques provide criteria for robust selection of parameters

^{*}Not the same as classical gain and phase margins: must be carefully interpreted as pointwise in frequency

Concluding Remarks

- Classical, flight proven, control design approaches have been applied to produce the SLS Flight control system: a generalized, well-characterized, and robust set of algorithms
- ◆ The innovative Adaptive Augmenting Control (AAC) component of the FCS has been thoroughly simulated and analyzed, flight tested, independently (NESC) reviewed, and ready for the first test flight of SLS
- ◆ AAC will extend the robustness of the basic control system for the first test flight and beyond

BACKUP

References

- ♦ Hanson, "A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles," 2002 AIAA GN&C Conference
- ◆ J. Hanson and C. Hall, "Learning About Ares I from Monte Carlo Simulation," in AIAA Guidance, Navigation, and Control Conference, Honolulu, HI, AIAA-2008-6622, 2008.
- ◆ Dennehy, Labbe, and Lebsock, "The Value of Identifying and Recovering Lost GN&C Lessons Learned: Aeronautical, Spacecraft, and Launch Vehicle Examples", 2010 AIAA GN&C Conference
- ◆ "The Wrong Stuff A Catalogue of Launch Vehicle Failures," http://www.astronautix.com/t/thewrongstuhiclefailures.html (Accessed Feb 28, 2017)
- ◆ J.Orr and T. VanZwieten, "Robust, Practical Adaptive Control for Launch Vehicles," in *AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, AIAA-2012-454*9, August 2012.
- ◆ J. Orr, "Optimal Recursive Digital Filters for Active Bending Stabilization," in AAS Guidance, Navigation, and Control Conference, Breckenridge, CO, 2013.
- J. Orr, J. Wall, T. VanZwieten, and C. Hall, "Space Launch System Ascent Flight Control Design," in AAS Guidance, Navigation, and Control Conference, Breckenridge, CO, 2014.
- J. Wall, J. Orr, T. VanZwieten, "Space Launch System Implementation of Adaptive Augmenting Control" in AAS Guidance, Navigation, and Control Conference, Breckenridge, CO, 2014.
- ◆ T. VanZwieten, E. Gilligan, J. Wall, and J. Orr, "Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18," in AAS Guidance, Navigation, and Control Conference, Breckenridge, CO, 2014.
- ◆ J. Wall et al. "In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System" in AIAA SciTech 2015, Kissimmee, FL
- ◆ D. Klyde, J. McRuer, and T. Myers, "Pilot-Induced Oscillation Analysis and Prediction with Actuator Rate Limiting," J. Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 81–89, 1997.