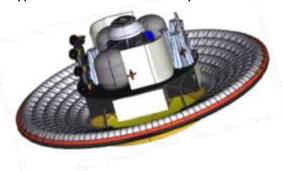


Introduction

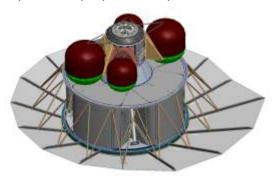
- This paper explores the impact of human Mars mission architecture decisions on the design and performance of a lander using the HIAD entry system.
 - Earth departure options
 - Mars arrival options
 - Entry Descent and Landing options

Related papers at this conference

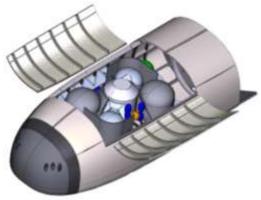
- "Human Mars EDL Pathfinder Study: Assessment of Technology Development Gaps and Mitigations" – Randy Lillard
- "Human Mars Mission Design Study Utilizing the Adaptive Deployable Entry and Placement Technology" – Alan Cassell
- "Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures" – Sharon Jefferies



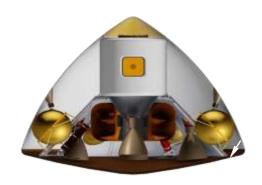
Entry Technologies


Inflatable

HIAD – Hypersonic Inflatable Aerodynamic Decelerator


Deployable

ADEPT – Adaptable Deployable Entry and Placement Technology



Mid L/D

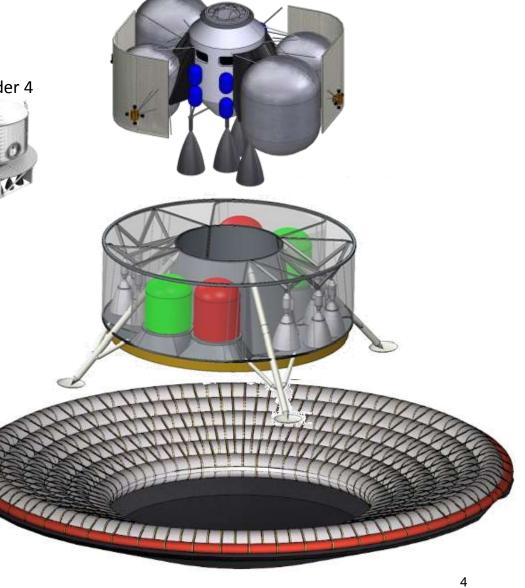
Rigid Structure

Capsule Concept

NASA is studying 4 entry system technologies for human missions. This paper is focused on the HIAD option.

HIAD Lander

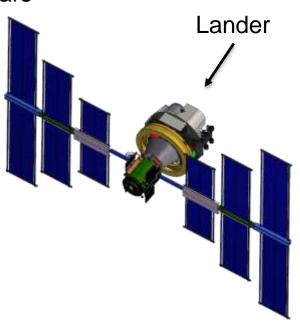
Cargo


Ascent vehicle, habitats, etc.

Lander 1 Lander 2 Lander 3 Lander 4

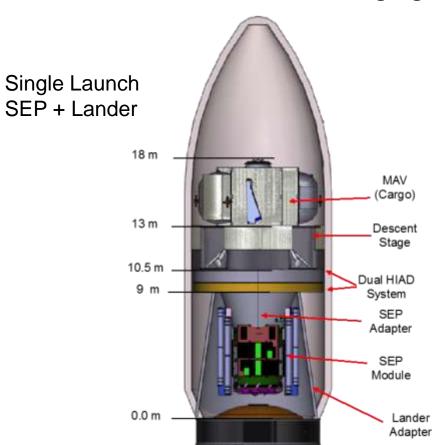
Entry System

Hypersonic Inflatable
 Aerodynamic Decelerator
 (HIAD)


Earth Departure Options

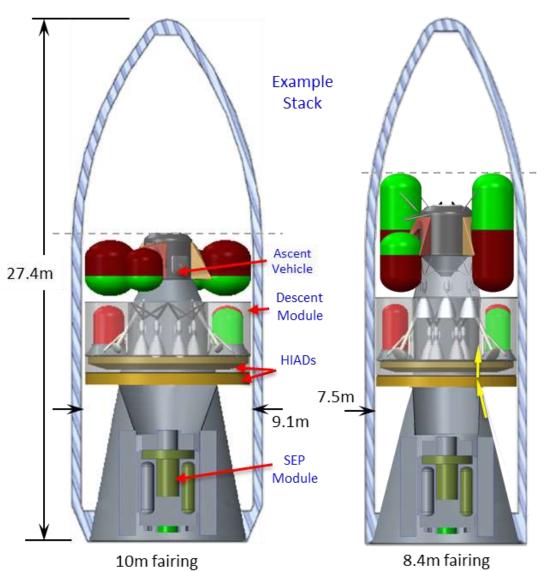
 There are several in-space propulsion options for delivering cargo to Mars. Solar electric, chemical, and nuclear thermal have been studied.

Solar Electric Propulsion offers 2 unique opportunities


- Single launch of lander and propulsion to Mars
 - Uses SEP one-way to Mars.
 - Spiral escape from high Earth orbit
- Reusable Earth to Mars transportation
 - SEP + chemical hybrid vehicle
 - Cislunar aggregation

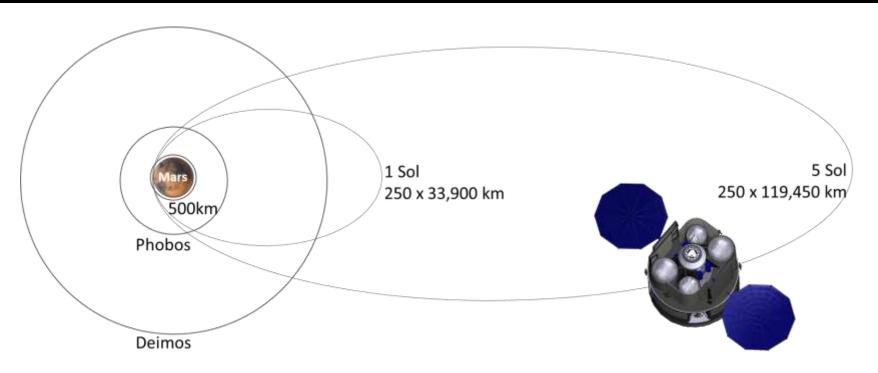
Earth Departure Options

Packaging in SLS 10m Fairing


Lander only launch Then rendezvous with reusable SEP hybrid for transit to Mars

Lander and SEP co-manifested results in greater lander structural mass due to challenge of meeting 5 Hz lat. stiffness goal

Earth Departure Options



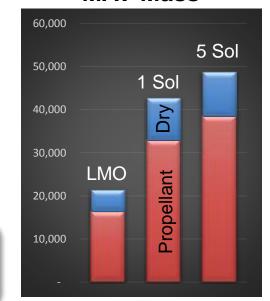
- SLS launch fairing diameters of 10m and 8.4m have been studied
- 3 of 4 entry system technologies are not likely to be feasible at 8.4m
- 8.4m fairing challenges mitigated by increasing lander mass and overall architecture risk
 - Structures,
 - landing gear design,
 - stability during entry,
 - aft body heating
- More landers needed to deliver the same payload
- See paper on this topic

Mars Arrival Options

- Two options for Mars orbit capture were studied
 - Aerocapture into a 1 Sol orbit, loiter ≤ 1yr, deorbit duration ~12hrs
 - Propulsive Capture using SEP Hybrid into 5 Sol orbit, loiter ≤ 1yr, deorbit duration ~2.5 days

Deorbit from 5 Sol may increase risk of unfavorable landing weather Aerocapture cases use a 2nd HIAD system to mitigate risk of long exposure during Mars loiter prior to entry.

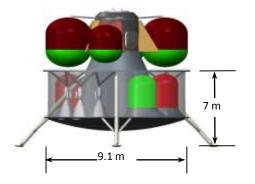
Entry Descent and Landing Options


Sensitivity to payload mass

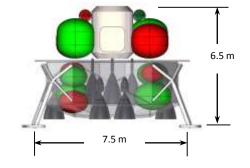
- The greater the payload capability of each lander the fewer number of landers are needed.
 - 4 landers are required with 20mt capability,
 3 with 27mt
- Smaller payload capability results in lighter landers, easier payload packaging and minimum required SEP power levels
- Payload capability is driven by MAV
 - Ascent to high Mars orbit (1Sol-5Sol) is desired for rendezvous with Earth return vehicle
 - Reliance on ISRU LOX production significantly reduces necessary MAV landed mass (MR > 3 for lox methane)

Total Lander Mass (t)= 1.51(payload) + 23.5 Aerocapture = **1.43(payload) + 18** Propulsive delivery to 5 Sol

MAV Mass



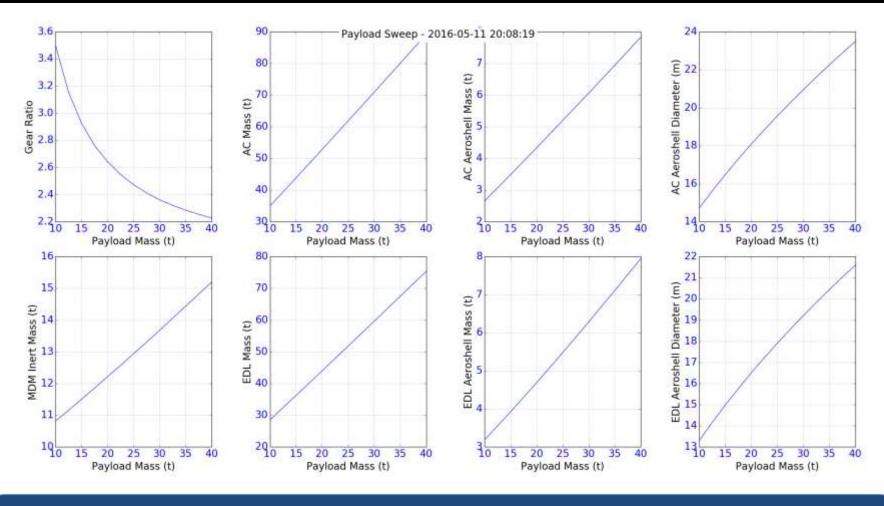
Entry Descent and Landing Options



- Propulsion Options: Lox/methane vs storable MMH/NTO (both assume pump fed main engines)
 - Common propulsion technology is assumed for descent and ascent to minimize investments across the architecture
 - Lox/methane + ISRU allows for MAVs to reach high Mars obits while minimizing landed mass to 20mt
 - A storable solution eliminates technology investment in long duration cryofluid management and offers greater packaging density for both descent and ascent stages
 - Storable option must deliver more payload because ISRU MAV propellant production is no longer an option
 - To minimize lander payload delivery requirement, the storable MAV is limited to ascent to a low Mars orbit and the cabin size is minimized to reflect 8-12hr habitation.
 - Requires a new vehicle, Mars orbit taxi, to complete ascent and rendezvous with Earth return vehicle.

Lox/Methane

Storable


Results

Component	Masses (kg)					
	Aerocapture to 1 sol Parking Orbit SEP/Chem Split Options			Propulsive delivery to 5 sol Parking Orbit SEP/Chem Hybrid Options		
	27 t LOX/Methane	20 t LOX/Methane	NTO/MMH	27 t LOX/Methane	20 t LOX/Methane	NTO/MMH
Structures	5442	4961	4961	4652	4253	4136
Propulsion	5310	4899	5206	5260	4842	5189
Power	1437	1217	1575	1437	1437	1575
C&DH	136	136	136	136	136	136
C&T	76	76	76	76	76	76
GNC	116	116	116	116	116	116
Thermal	357	328	573	357	328	573
Decelerator	9444	9444	9444	4185	4185	4185
Dry Mass	22,318	21,177	22,087	16,219	15,373	15,986
Cargo	27,000	20,000	23,881	27,000	20,000	24,187
Non-prop Fluids	851	848	951	850	843	920
Inert Mass	50,168	42,025	46,919	44,068	36,216	41,093
Used Propellant	14,093	11,668	12,289	12,519	10,367	11,497
Total Wet Mass	64,261	53,693	59,208	56,587	46,583	52,590

Results

Parametric mass models are in development for all four entry system technologies considered. Models are anchored by point designs generated by multidisciplinary team.

Conclusions

- Landers can be launched alone or co-manifested with SEP stages.
 however in either case a 10m fairing diameter is desired
- Dual HIADs are assumed for aerocapture options. A single dual use HIAD may be possible but further testing is required
- Lox/methane propulsion + ISRU allows for direct ascent to high mars orbit, while keeping lander payload delivery requirement small
- Storable propulsion options are heavier, require another vehicle to complete ascent, but eliminate need for CFM technology investments
- The HIAD-based Mars lander can accommodate a variety of architecture options.

