Marvin W. Barnes¹

¹Metals Engineering Division, NASA Marshall Space Flight Center

NTP CERMET Fuel

Nuclear and Emerging Technologies for Space (NETS) 2017 Orlando, FL

Presentation Overview

NTP CERMENT FUEL DEVELOPMENT

- GE710 Program
- NTP CERMET Fuel Development
 CERMET FABRICATION USING TUNGSTEN
 POWDER COATING AND SPARK PLASMA
 SINTERING
- Background
- Tungsten Powder Coating
- Spark Plasma Sintering
- Experimental Approach
- Results
- Conclusions

GE710 Program

- Extensive CERMET fuel development program
 - Over 15 million invested from May 1962 to Sept 1968
 - Operated fuel element fabrication line for reactor-sized fuel elements
 - Successfully fabricated 40+ W-60vol%UO₂ fuel elements for qual testing

Conducted over 300,000 hours of qualification testing

710 fabrication approach

- Press and sinter W-UO₂ compacts
- Machine cooling channels
- Stack compacts
- Weld tubes for cooling
- Weld external cladding

NTP CERMET Fuel Development

- Hybrid GE710 Approach
 - GE710 approach with modern fabrication processes
 - Spark Plasma Sintering
 - Tungsten Powder Coating
- FY16 Development Efforts
 - Fabricated W-dUO₂ compacts using Spark Plasma Sintering and Tungsten Powder Coating
 - Phase I SBIR Bonding tungsten
 CERMET compacts
 - Phase I SBIR Electrolytic method for tungsten coating

NTP CERMET Fuel Development

FY17 Development Efforts

- Developing process to fabricate subscale surrogate elements from compacts
- Optimizing compact fuel element environmental testing (CFEET) apparatus
- Initiating multiscale modeling task
- Tungsten electron beam welding study

FY18 Planning

- SPS fabricate compacts with particles provided by BWXT
- Hot hydrogen screening of W-dUO₂
 compacts and subscale fuel segments

CFEET Testing

Multiscale Modeling

CERMET Fabrication

Nuclear and Emerging Technologies

for Space (NETS) 2017 Orlando, FL

Background

- Past efforts focused on consolidating blended tungsten powder and uncoated dUO₂ particles
 - Poor quality feedstock
 - Large particle size distribution
 - Non-spherical particles agglomeration
 - Need for coated particles
 - Particle segregation/non-uniform distribution of UO₂ within W matrix
 - Low density/ partial consolidation
 - Fuel element distortion
 - Explored CVD coating
 - Complex process due to the need to fluidize particles
- Developed W powder coating
 - Non compatible with past consolidation methods
 - Led to SPS
- Small amount of CIF funding augmented by NTP Project

Tungsten Powder Coating

- Straightforward approach to particle coating
- Conducted experiments with 6 different organic binders
- Coating Process
 - Blend W powder, dUO₂ particles, and binder
 - Stir mixture above binder drop point on hot plate for 5 min
- Not as uniformly coated as CVD coated particles

Spark Plasma Sintering

- Rapid Consolidation/Sintering
- Net-shape/Near Net- Shape Parts
- High Density Parts
- Simple Process

- 1. Pictures courtesy of UC Davis and Substech
- 2. R.C. O'Brien, S.K. Cook, L.C. Hone. "Fabrication of depleted UO2-W Cermet Fuel Elements via Spark plasma Sintering: Advances and Progress Made", Stennis Space Center, MS: s.n., 2014. Nuclear and Emerging Technologies (NETS).

Experimental Approach

- Utilized SPS system at CSNR to sinter W/UO₂ samples
 - Used W powder coated particles
- Sintered 24 samples at 1600C, 1700C, 1750C, 1800C, and 1850C peak temperatures
- 20-minute dwell time at peak temperatures; Pressure of 50 MPa
- Measured density and SEM
- TEM, hardness, and further SEM planned
- CFEET testing planned

Density

- Increased with peak sintering temperature
- Near theoretical density

Specimen	Thickness (mm)	Diameter (mm)	Average Density (g/cm³)	Percent of Theoretical (%)
NASA-SPS-1850C-001	5.90	19.93	14.2	99.5
1800C-001	5.45	19.95	14.1	98.5
1800C-002	5.94	19.96	14.1	98.6
1800C-003	5.57	19.91	14.1	98.5
1800C-004	6.03	19.91	14.0	98.3
1800C-005	5.60	19.93	14.0	98.2
1750C-001	6.10	19.89	14.1	98.7
1750C-002	6.15	19.90	14.0	98.2
1750C-003	5.60	19.96	14.1	98.7
1750C-004	5.70	19.90	14.1	98.7
1700C-001	6.00	19.90	14.0	98.1
1700C-002	6.40	19.93	14.0	98.1
1700C-003	5.93	19.90	13.9	97.6
1700C-004	6.00	19.96	14.0	98.2
1600C-001	6.10	19.90	13.9	97.2

Density

Max Temp vs % Theoretical Density

SEM

- Improved microstructure
- UO₂ particles more uniformly dispersed
- Cross-section depicts some particle elongation

M. Barnes, D. Tucker, L. Hone, S Cook., "Nuclear Rocket CERMET Fuel Fabrication using Tungsten Powder Coating and Spark Plasma Sintering", NASA Technical Paper

- Energy-dispersive X-ray spectroscopy (EDS)
 - No unexpected phases

Conclusions

- Improved mechanical properties and microstructure
- Further characterization needed and planned
 - Mechanical Properties
 - Thermal Properties
 - Chemistry
- Develop process to form elements from compacts
 - Stacking
 - Bonding
 - Cooling channel formation
 - Cladding