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Overview

• Shielding for Nuclear Propulsion

• Time Series Dose Calculator

• Optimization Methodology

• Example Optimizations

• Material Comparison

• Conclusions
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Shielding for Nuclear Propulsion
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Compartmental Design

• Separate geometry into component parts

• Generalize inputs for each compartment

• Match inputs with output from preceding compartment
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Radiation Limits

Example effective dose limits for 1-yr missions resulting in 3% REID.

Assume equal dose to all tissue. No prior occupational exposure.

Females Males

Age

(yr)

Avg US Adult 

Population

Never-

Smoker

Avg US Adult 

Population

Never-

Smokers

30 0.44 Sv 0.60 Sv 0.63 Sv 0.78 Sv

40 0.48 Sv 0.70 Sv 0.70 Sv 0.88 Sv

50 0.54 Sv 0.82 Sv 0.77 Sv 1.00 Sv

60 0.64 Sv 0.98 Sv 0.90 Sv 1.17 Sv

Dose limits for Short-Term or Career Non-Cancer Effects (in mGy-Eq. or mGy)

Organ 30-day limit 1-year limit Career

Lens 1,000 mGy-Eq 2,000 mGy-Eq 4,000 mGy-Eq

Skin 1,500 3,000 6,000

BFO 250 500 N/A

Circ syst 250 500 1000

CNS 500 mGy 1,000 mGy 1,500 mGy

CNS (Z≥10) - 100 mGy 250 mGy

Deterministic

Stochastic

Human Dose Limits

Stepper Motors – 109 Rad

Material Dose Limits

Pumps - ??
FPGA – 104 Rad
ASIC – 105 Rad

(Warmer)

(Cooler)

Convective
Flow

Nuclear Heating

Pump 
Inlet

Ullage

Stratified

Heat in Cryo
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Time-Series Dose Calculation

• MCNP6 Model:
• Import surface source generated from criticality run

• Construct representative model of vehicle:
• Structure (bulkheads)

• Tank walls

• Propellant

• Nozzle

Crew compartment excluded: 

 Dose measured at fixed distance  80 m (after drop tank) 

• Variable propellant load corresponding to mission profile
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MCNP calculated dose response functions

MCNP6 dose response for varying propellant loads due to prompt neutron and gamma during engine 
operation (left) and due to delayed gammas from fission products across six energy groups (right).
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Empirical fission product gamma terms

Empirical model[1,2] of fission product buildup during operation (left) and decay after shutdown (right).
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Γ𝑗 𝑡𝑜, 𝑡𝑠 = 𝑃𝑜

𝑖=1
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𝜆𝑖𝑗
𝑒−𝜆𝑖𝑗𝑡𝑠[1 − 𝑒−𝜆𝑖𝑗𝑡𝑜]

1. George, D.C., et al., “Delayed photon sources for shielding applications,” Trans. Am. Nucl. Soc., 35, 463 (1980).

2. LaBauve, R.J., England, T.R., George, D.C., Maynard, C.W., “Fission product analytic impulse source functions,” Nucl. Technol., 56, 322-339 (1982).
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Mission profile
Combine source and response functions, controlled by mission parameters:  𝐷 𝐸, 𝑡 = 𝑆 𝐸, 𝑡 𝑅(𝐸, 𝑡)
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Evolutionary Algorithms

• AKA: Genetic algorithms

• Parameters of a design are 
encoded as a vector

• Population of designs are tested

• Best performing designs are 
more likely to pass traits to next 
generation

• Occasional random mutation of 
traits is permitted

• Both Fitness and Diversity are 
important!

Produce initial population

Evaluate fitness of each individual

Preferentially select high-fitness indiduals 

Crossover: Combine high-fitness traits

Mutation: Allow chance of deviation in 
new population

Replacement: eliminate old population 
and replace with new generation

Check convergence

End
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Multiobjective Optimization

• Non-dominated solutions comprise the ‘Pareto set’
• Hypothetical curve of non-dominated solutions is true ‘Pareto front’

𝑏

𝑎

𝑐

𝑓( ҧ𝑥)

𝑔( ҧ𝑥)

𝑓( ҧ𝑥)

𝑔( ҧ𝑥)

𝑃𝐹𝑘𝑛𝑜𝑤𝑛

𝑃𝐹𝑡𝑟𝑢𝑒
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The ‘genome’ of a shield

• Parameters of shield candidate are stored in a vector

• Sorted to preserve some correlation for individual layers

2.8 3 56.3 1.7 3 98.1 5.3 3 74.3 3.4 2 30.9

Layer 1 Layer 2 Layer 3 Layer 4 

Thickness
Material

Radius
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Visualized…

Generate 
Shield

Calculate 
Dose & Mass

Repeat for N
individuals

Aggregate and Score 
Performance

Mass

D
o

se
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Fitness Scoring

• Measure distance between each point and its nearest line

𝑑 = min
𝑑𝑎𝑃 = 𝑛𝑜𝑟𝑚(𝑎, 𝑃)
𝑑𝑏𝑃 = 𝑛𝑜𝑟𝑚(𝑏, 𝑃)

𝑎 = (𝑥𝑎 , 𝑦𝑎)

𝑏 = (𝑥𝑏 , 𝑦𝑏)

𝑃 = (𝑥𝑃, 𝑦𝑃)

𝑖𝑓 𝑎 − 𝑏 ∙ 𝑃 − 𝑏 × 𝑏 − 𝑎 ∙ 𝑃 − 𝑎 < 0

The point is past the orthogonal bounds of the segment…

𝑏

𝑃

𝑎

Otherwise…

𝑑 =
1

dab

𝑥𝑎 𝑦𝑎 1
𝑥𝑏 𝑦𝑏 1
𝑥𝑃 𝑦𝑃 1

Or in English: distance is the absolute value of
the determinant of the matrix shown above, divided

by the distance between points a and b.
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Diversity Scoring

• Measure distance between each point and its nearest neighbor point

𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 = min
𝑘=1→𝑁

𝑛𝑜𝑟𝑚(𝑃𝑘 , 𝑃𝑖)

…

𝑃1

𝑃2

𝑃3

𝑃𝑁

𝑃𝑁−1
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Selection

2.8 3 56.3 1.7 3 98.1 5.3 3 74.3 3.4 2 30.9

3.1 3 52 2.5 2 60.4 5.8 3 32.2 5.5 2 31.9

2.5 3 83.9 3.5 3 58.1 2 3 84.2 2.2 1 38.5

4.2 3 91.2 3.3 2 41.3 3.4 2 45.8 2.6 3 94.1

• Preferentially select for reproduction based upon performance scoring

2.8 3 56.3 1.7 3 98.1 5.3 3 74.3 3.4 2 30.9

2.5 3 83.9 3.5 3 58.1 2 3 84.2 2.2 1 38.5

Fitness 
(F)

Diversity 
(D)

Score 
(S)

Repr. 
Prob (P)

WF WD

1 2

0.5 1 2.5 0.22

2 0.5 3 0.26

1 0.5 2 0.17

2 1 4 0.35

𝑆𝑖 = 𝑊𝐹 𝐹𝑖 +𝑊𝐷 𝐷𝑖

𝑃𝑖 =
𝑆𝑖
σ𝑆
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Reproduction – Split and recombination

• Split the two ‘genomes’ at a random location and recombine

2.8 3 56.3 1.7

2.5 3 83.9 3.5 3 58.1 2 3 84.2 2.2 1 38.5

3 98.1 5.3 3 74.3 3.4 2 30.9

2.8 3 56.3 1.7 3 58.1 2 3 84.2 2.2 1 38.5

• Add to the next generation of candidate designs:

• Allow chance for mutation: 2.8 3 56.3 1.6 3 58.1 2 3 92.6 2.2 2 38.5
-6

%

SW
A

P

+1
0

%
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The Algorithm 
(as implemented)

• Includes a secondary 
‘archive’ population of high-
performers

• Allows greater mutation 
rates and diversity without 
losing ground

Produce initial population (random)

Replaceable Population Archival Population

Parse and record result

Repeat for n=gen_size

Score fitness

Perform transport calculation

Translate fitness to selection 
probability

Perform roulette selection for 
Parent 1

Repeat for n=gen_size

Perform roulette selection for 
Parent 2

Randomly select crossover point 
and recombine

Apply mutation (if randomly 
selected)

Add to new generation set

Select new archive set

Repeat for m=n_generations
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Progression of the Multiobjective 
Evolutionary Algorithm (MOEA)
• Begins with random selection that fills the design space

• Converges toward the Pareto front within ~40 generations

• Thereafter, gradually pushes PFknown toward PFtrue (mutation is important here)
Generation 1 Generation 10 Generation 20

Generation 30 Generation 50Generation 40



Marshall Space Flight Center

Interpreting The Results
• All of parameter space is collapsed into each point displayed in 

objective space

• Requires some creative methods of visualization…
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Example Case: 40 kW limit to Core Stage Tank
1) Generate Source:

Cutaway radius (cm) 

Black (M3) = Boron Carbide
Grey (M2)  = Tungsten

T
h

ic
k

n
e

ss
 (

cm
) 

REACTOR
Propellant 

2) Embed in Problem Geometry:

3) Execute Optimization Code:

4) Apply Constraint for Evaluation
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Example Case: 0.2 Sv Entering Crew Compartment

Generate SourceREACTOR

Implement Source in Unshielded 
Time-Series Calculation

ß Propellant Drain 

Score Tally for Dose-rate at 
Discrete Time Intervals

Step 1) Evaluate time-series profile of a reference case, e.g. no-shield
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Example Case: 0.2 Sv (continued)
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Step 2) Determine terminal dose rate and cumulative dose:

𝐷𝑡𝑜𝑡 = 7.0 𝑆𝑣ሶ𝐷𝐸𝑂𝐵 = 4.2𝐸 − 2
𝑆𝑣

𝑠
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Example Case: 0.2 Sv (continued)

Step 3) Determine Scaled terminal dose ( ሶ𝐷′𝐸𝑂𝐵) required to satisfy the 
imposed dose constraint (𝐷′𝑡𝑜𝑡)

ሶ𝐷′𝐸𝑂𝐵 = ሶ𝐷𝐸𝑂𝐵
𝐷′𝑡𝑜𝑡
𝐷𝑡𝑜𝑡

ሶ𝐷′𝐸𝑂𝐵 = 4.2𝐸 − 2 ൗ𝑆𝑣
𝑠
0.2 𝑆𝑣

7.0 𝑆𝑣
= 𝟏. 𝟐𝑬 − 𝟑 ൗ𝑺𝒗

𝒔
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Example Case: 0.2 Sv (continued)

Step 4) Perform shield optimization using terminal dose rates only

Step 5) Select Appropriate Shield using  Scaled Terminal Dose Rate ( ሶ𝐷′𝐸𝑂𝐵)

Cutaway radius (cm) 

Black (M3) = Boron Carbide
Grey (M2)  = Tungsten

Th
ic

kn
es

s 
(c

m
) 
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Material mass comparison

Mass (kg)
Ratio

Δ Mass 
(kg)LiH+B4C+W B4C + W

Heating 
from 
single 
engine

30 kW 395 456 1.15 61

50 kW 185 205 1.11 20

70 kW 87 101 1.16 14

LiH Permitted (B4C forced in first layer) B4C and W only 
M1 = LiH
M2 =   W
M3 = B4C

70 kW

50 kW

30 kW
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Conclusions

• Created a set of methods and tools to aid design and analysis of 
shielding for space nuclear propulsion

• Time-series dose calculator 
• Necessary tool for calculating integral dose 

• Highlights the importance of shielding for final burn

• Optimization code
• Permits flexible design optimization, including ‘hot-swappable’ materials

• Unconstrained multiobjective approach is ideal for facilitating design trades

• Can be re-implemented in entirely new ways, e.g. add traits, change geometry
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Future Work

• Additional complexity for design space
• Slower convergence (more ‘noise’) 

• More possibilities for efficiency improvement

• Extension to greater than two objectives
• Refactor some portions of code for higher-order solutions

• Visualization and interpretation become much harder

• Implement improved ‘exploitation’ methods
• Further narrows design space toward PFtrue using other methods

• Hastings Metropolis, Simulated Annealing, etc.
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BACKUP
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Contours

• MCNP6 FMESH Tallies:
• Neutron flux

• Fast – Epithermal - Thermal

• Dose
• Silicon (electronics)

• Tissue (dosimetry)

• GNUPlot: 

Ugly scripts  Pretty plots
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Engine Offset without Correction

ORIGINAL UNCORRECTED OFFSET
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Engine Offset with Correction

ORIGINAL CORRECTED OFFSET
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Time-series Dose (w/ Cosmic dose) Linear Scales

Y-axis: Linear

X-axis: Standard

Y-axis: Linear

X-axis: Condensed

(Coast phase x10000)
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Time-series Dose (w/ Cosmic dose) Log Scales

Y-axis: Log

X-axis: Standard

Y-axis: Log

X-axis: Condensed

(Coast phase x10000)


