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Introduction

• Nuclear propulsion systems have the potential for much higher 
specific impulse than chemical engines
– Various concepts have been proposed in the past (NTRs, Orion, etc.)

• If implemented a Fusion based system could way out perform a 
fission system such as an NTR, but has suffered from technical 
challenges
– Confinement at the required density and for the necessary length of time 

has been difficult to achieve due to plasma instabilities
– However; a fusion / fission hybrid could relax the confinement requirements
– Management of the instabilities with mitigating processes could improve 

confinement

• Interested in the design of a z-pinch target that manages 
instabilities to achieve fusion / fission reactions for a propulsion 
system
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Rayleigh-Taylor Instability (RTI)

• Most destructive
• Occurs due to acceleration and density gradient vectors in 

opposite directions
– Light fluid supports dense fluid

• Small perturbations at interface between fluids quickly grow 
leading to turbulent mixing
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Rayleigh-Taylor Instability (RTI)

• Estimates of growth rates of interest
– typically calculated with linearized MHD equations
– Relevant to confinement time

• Interested in cylindrical geometry in which the 
magnetic field acts as the lighter fluid (density 
of zero) 
– As in a z-pinch

Schlieren image of z-pinch.  Cylindrical 
geometry disrupted by instabilities

• Image:  Ben Dudson, Plasma Instabilities, University of York
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What is a Z-pinch?

• A z-pinch a large pulsed current with high dI/dt to generate an 
azimuthal magnetic field and ionize the target.  The current and 
magnetic field produce the Lorentz force and compress the 
target

• This process is one concept for producing fusion reactions
• The fusion/fission propulsion system concept of interest uses a 

z-pinch to compress the fuel
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RTI – Mitigating processes

• Decades of study and experiment have shown various processes 
to have mitigating effects upon the growth rate of the Rayleigh-
Taylor Instability
– E.g. shock waves, tailored density profiles, staged annular collapse, viscosity, 

shear, and resistivity

• Past experiments should be well understood and used to guide 
the development of a target for a z-pinch propulsion system

• Several of the following slides highlight particularly interesting 
experiments 
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From Literature - Experiments of Interest
Frozen Deuterium Exploding Wires

• Wires of Frozen Deuterium used 
in z-pinch experiments

• Unexpected level of stability
– Loss of stability occurred at max 

current, dI/dt=0, and at complete 
ablation of wire core

• Expected contributions to stability
– Sufficient resistivity in plasma
– Ablation of the wire core
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From Literature - Experiments of Interest
Dielectric Coating

• Dielectric coatings have been 
used to suppress instability 
development
– Reduces electrothermal 

instabilities at the surface which 
seed RTI

– Reduced initial perturbations lead 
to reduced RTI growth

• X-Ray images to the right show 
large improvement in stability for 
coated surface
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From Literature - Experiments of Interest
Axial Magnetic Field

• Largest growth rates occur 
when wave number and 
magnetic field are 
perpendicular

• An axial magnetic field in the 
z-pinch of a liner with a pre-
ionized gas fill can increase 
stability 
– Magnetic field compresses along 

with liner

• Radiographs show improved 
stability for higher axial magnetic 
field in the image to the right
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Pulsed Fusion Fission Propulsion System 
Concept (PuFF)

• Concept uses a z-pinch to compress the target and burn the fuel through 
fusion and fission reactions
– Using a hybrid reaction is intended to relax the conditions under which the plasma 

must be compressed
• After compression the products are expanded through a magnetic nozzle to 

produce thrust
• As is the case for other z-pinch applications, RTI is an obstacle

– Must be managed to achieve 
successful compression and reaction

– Stabilizing processes from other 
experiments may be incorporated 
into the target design to improve 
stability and performance
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Stability Concepts for Target Design

• Frozen Deuterium/Uranium Pellet
– A cylindrical pellet with a frozen deuterium core and Uranium shell

• Frozen core and the ablation process may be stabilizing
– Frozen deuterium or other dielectric outer coating may be used to suppress 

electrothermal instabilities to further increase stability

• Uranium liner with Deuterium Plasma fill and Axial B-field
– Such a concept may employ the stabilizing effect of an axial magnetic field
– Dielectric coating may also be used to suppress instability development

• Staged Collapse of Deuterium/Lithium plasma onto Uranium 
Pellet
– Carful design of the radial density profile, annular stages, and shock waves 

may stabilize annular plasma shells that could be collapsed onto a uranium 
pellet
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Forward Work

• Ongoing review of past experiments and analysis
– Continued maturation of concepts

• Modeling of targets and compression using SPFMax
– SPFMax is a smooth particle fluid magneto hydrodynamic code under 

development at the University of Alabama in Huntsville (UAH)
– Results will influence the design of experiments for Charger 1, a 1 TW pulsed 

power facility at UAH
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