
Trans. JSASS Aerospace Tech. Japan

Vol. 14, No. ists31, pp.Pd 1 - Pd 8, 2017

Automated Sensitivity Analysis of Interplanetary Trajectories for Optimal

Mission Design

By Jeremy KNITTEL,1 Kyle HUGHES,1, Jacob ENGLANDER,1 and Bruno SARLI2

1)NASA Goddard Space Flight Center, USA

2)Catholic University of America, USA

(Received April 17th, 2017)

This work describes a suite of Python tools known as the Python EMTG Automated Trade Study Application (PEATSA). PEATSA

was written to automate the operation of trajectory optimization software, simplify the process of performing sensitivity analysis,

and was ultimately found to out-perform a human trajectory designer in unexpected ways. These benefits will be discussed and

demonstrated on sample mission designs.

Key Words: mission design, trajectory optimization, missed-thrust analysis

1. Introduction

The first task of the flight dynamicist on an interplanetary

mission is typically to create an optimized (or at least feasible)

trajectory. This is also the primary focus of presented work at

flight dynamics conferences and symposia. However, the sec-

ond task for the flight dynamicist often occupies far more time:

sensitivity analysis. We use this phrase to describe any change

to the nominal and optimized trajectory due to considerations of

operational constraints, subsystem requirements, or spacecraft

faults. This paper presents a new method of automating sen-

sitivity analysis and the resulting impact on global trajectory

optimization and improved overall mission design.

The trajectory solver used in this work is the Evolutionary

Mission Trajectory Generator (EMTG).1) It is capable of solv-

ing for electric propulsion (EP) trajectories using a slightly

modified version of the Sims-Flanagan transcription2) and tra-

jectories using impulsive maneuvering via a two point shoot-

ing method.3) EMTG generates trajectories using a user-

supplied or random initial guess, a non-linear programming

(NLP) gradient-based optimizer and monotonic basin hopping

(MBH).

If given a good user-supplied initial guess, EMTG converges

extremely quickly. If a poor or no initial guess is provided,

EMTG is still fully capable of converging to the same optimal

trajectory, however the process is stochastic and requires suf-

ficient time for MBH to provide the NLP solver with a good

enough starting point, in the desired region of the design space.

Unfortunately, the trajectory designer does not know a priori

what the appropriate length of time is. Frequent checking of the

solution requires frequent effort from the trajectory designer,

and is a very human-labor intensive operation. Further, manu-

ally modifying any cases that did not satisfactorily converge is

entirely impractical when running the hundreds or thousands of

cases often required to perform sensitivity analysis.

Initially written to address only the issue of engineer work-

hours, a suite of tools was written and named the Python EMTG

Automated Trade Study Application (PEATSA). It was quickly

found to be an effective means of tackling additional unforeseen

challenges as well. The fundamental principle behind PEATSA

is that it iteratively runs a “batch” of sensitivity analysis cases in

the trajectory optimization software until some stop criteria has

been satisfied for all cases. Between each iteration, PEATSA

will use converged cases to give better and better initial guesses

to any case that has not yet met the stopping criteria. Introduc-

ing iterative running of EMTG has thus far produced four major

benefits for sensitivity analysis:

1. It allows shorter run time of each case, thus decreasing

wasted computation time.

2. It allows updating of initial guesses, thus increasing the

likelihood that the trajectory solver converges.

3. It allows random modification of design options (such as

gravity assist sequence) that might be more optimal than

those used for the baseline design. This makes this sen-

sitivity analysis method much closer to globally optimal

than otherwise would be possible.

The reader should note that this is not the first attempt to

introduce a flyby sequence and spacecraft systems trade study

optimization capability into EMTG. Vavrina et al.9) imple-

mented a multi-objective hybrid optimal control (HOC) trade

study optimizer using a cap-and-optimize transcription and a

multi-objective genetic algorithm. This technique was reason-

ably effective in exploring a large trade space of target selection

and systems designs but suffered from a significant flaw in that

it required the optimization of each individual trajectory sub-

problem to be perfectly reliable. As mentioned, the stochastic

nature of the trajectory solver means that it can never be per-

fectly reliable. The approach presented in this work attempts

to correct this deficiency by instantiating many trajectory op-

timization sub-problems that can share information by using

each-others solution as a new initial guess.

Results will be shown describing the operation of PEATSA,

and demonstrating the above benefits when applied to the fol-

lowing sensitivity analysis tasks: performing a mission systems

trade study, developing a launch window, and analyzing missed-

thrust during an EP trajectory.

Copyright c© 2017 by the Japan Society for Aeronautical and Space Sciences and ISTS. All rights reserved.

Pd 1



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

2. Trajectory Solver

While PEATSA was written and currently only works with

EMTG, it could be adapted to just about any trajectory opti-

mization software. EMTG is a particularly convenient choice,

however, as it has a Python interface and can be run from a

command line. EMTG is written in object-oriented C++, with a

class named missionoptions to hold all of the options specified

in an EMTG input file, including the initial guess. Similarly,

EMTG has C++ classes named mission and journey which

hold all of the trajectory data encapsulated in an EMTG output

file. All of these data structures were replicated in Python for

use with EMTG’s graphical user interface (GUI). These GUI

classes allow Python scripted reading and writing of EMTG in-

put and output files. If PEATSA were to be adapted to a new tra-

jectory solver, Python classes to hold data for input and output

files would be needed, or PEATSA itself would need to change

languages to match the software. Further, it must be possible

to initiate an optimization run in the new trajectory solver from

a command line so that PEATSA can run instances of the soft-

ware using Python code.

The EMTG Python classes will be referenced in pseudocode

below. The formulas provided will not be usable, as they do not

use exact EMTG or PEATSA variable names, but are instead

intended to give understanding of the operation of PEATSA.

3. Methodology

There are four main tasks performed by PEATSA. These

tasks and the general structure in which they are completed is

shown in Algorithm 1. This section will discuss the overall

methodology of PEATSA and each of these tasks in greater de-

tail.

Algorithm 1 Pseudocode of PEATSA

1: parse PEATSA options file

2: current iteration = 0

3: Task 1. Create an options file for each trajectory case in

the correct format for EMTG. These are the iteration 0

cases

4: while there are cases to run do

5: Task 2. Run [current iteration] cases in EMTG and

wait until all cases have completed

6: Task 3. Post-process [current iteration] results, saving

results to a comma separated value (csv) file

7: current iteration++

8: Task 4:

9: for all cases in the csv file do

10: if case has not met success criteria then

11: find another case that would be a good initial

guess for this case and re-create the options

file for this case using the improved initial

guess as an iteration [current iteration] case

12: end if

13: end for

14: end while

Table 1. Highlighted PEATSA options

n number of cpu core’s available

EMTG location location of trajectory optimization

solver

start type whether to start from scratch, or

from a previously PEATSA run

run type type of sensitivity analysis task be-

ing conducted

nominal tra jectory the trajectory being modified

EMTG runtime how long to run each case through

EMTG

goal the objective that each case is trying

to acheive (for example, final mass

> 1000 kg)

guess f older a list of folders that PEATSA can

use to look for initial guesses in ad-

dition to the PEATSA results them-

selves

wait f or guess should PEATSA wait to run a given

case until it has an initial guess?

modi f y f lybys should PEATSA modify the nomi-

nal flyby sequence when re-running

cases?

maximum f lybys maximum number of flybys

f lyby bodies which bodies are allowable for a

flyby

options override a list of options to change from the

nominal tra jectory

options conditions a list of conditional statements de-

termining whether to actually make

the changes specified in the match-

ing list entry from options override.

This allows the options to be modi-

fied for only a subset of cases

analysis f ormulas a Python list of items to be cal-

culated during post-processing for

each trajectory

sorting criteria how to sort the trajectories in the

post-processed csv file

comparison criteria how to compare versions of the

same trajectory from different iter-

ations

plots to make a list of plots to generate after each

iteration

3.1. PEATSA Options

Before addressing the main tasks, it is useful to mention that

the first operation executed is running a separate Python script

to set options which will control the procedure of the given

PEATSA run. PEATSA has more options than can be discussed

here, but some of the most important are highlighted in Table 1.

These options along with additional more specific ones will be

discussed further in Sections 3.2. - 3.5..

3.2. Task 1. Case Creation

The first main utility of PEATSA is to generate EMTG op-

tions scripts for sensitivity analysis cases. Even starting from

a nominal trajectory, it can be a labor intensive task to create a

similar, but slightly modified case for every new situation de-

Pd 2



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

Table 2. Highlighted PEATSA general trade study options

options to vary a list of which options are to be varied

option ranges a list of lists to specify the val-

ues to consider for each option in

options to vary

trade study type flag controlling if PEATSA generates

all unique combinations of options or

only varies one option at a time

sired. For example, if a nominal trajectory launches on January

15th, then to develop a ± 15 day launch window, the same case

must be run with the launch date constrained to January 1st,

2nd, 3rd, ..., 29th, and 30th. While this is not a particularly

challenging task, PEATSA completes it faster, and with much

less risk of error. Further, certain sensitivity analysis studies

require thousands of cases, an impractical amount of work to

complete manually.

3.2.1. General Trade Studies

The most common use of PEATSA is to perform trade stud-

ies, a subset of sensitivity analysis. In this sense, we are re-

ferring to varying any number of constraints and/or spacecraft

system properties from their value in a nominal trajectory. With

this definition, we include varying any of the following common

trajectory details: the launch date of a trajectory (launch win-

dow), the launch vehicle, the solar array sizing, the spacecraft

dry mass, the total flight time, the Sun-Earth-target angle at tar-

get arrival, etc. The only limit to the property which is varied

is that it must be an existent constraint or setting in EMTG, and

therefore EMTG’s Python options class MissionOptions.py.

The additional options that PEATSA uses to create a trade

study run are shown in Table 2. Note that general trade

studies can be performed in two distinct ways, based on the

trade study type. Because a given PEATSA run might involve

a long list of options to vary, it is not clear how PEATSA

will create the cases. That is, if options to vary has two

properties, should PEATSA vary both of these items at once,

or only one at a time? For example, assume options to vary =

[MissionOptions.launch date,MissionOptions.launch vehicle]

and option ranges = [[Jan 1st, Jan 3rd],[Atlas V 401, Atlas V

551]] and the nominal trajectory launches on January 2nd on an

Atlas V 431. Then, if both options are concurrently varied, the

4 cases created will be [Jan 1st, Atlas V 401], [Jan 1st, Atlas

V 551], [Jan 3rd, Atlas V 401] and [Jan 3rd, Atlas V 551]. On

the other hand, if only one option is varied at a time, then the 4

cases created will be [Jan 1st, Atlas V 431], [Jan 3rd, Atlas V

431], [Jan 2nd, Atlas V 401], and [Jan 2nd, Atlas V 551]. In

this simple example, 4 cases are created in both circumstances.

However, in general, concurrently varying options will result

in far more cases. Concurrently varying cases will result in a

number of cases equal to the multiplicative of the length of

each list in option ranges, whereas single property variation

creates a number of cases equal to the summation of the length

of each list in option ranges.

3.2.2. Missed-thrust

A trajectory employing solar electric propulsion (EP) often

requires firing thruster(s) continuously for months. However, if

the spacecraft has a fault of any sort en route, it may need to go

into safe-mode and temporarily turn off its thrusters. For this

reason, EP trajectories are typically designed with additional

Table 3. Highlighted PEATSA missed-thrust options

x how often to insert a forced coast

ob jective type should PEATSA insert fixed length forced

coasts or optimize on coast length

margins, not imposed on chemical propulsion missions.4) As a

result, one crucial analysis task for EP missions is missed-thrust

sensitivity. The general principle is to ensure that the spacecraft

can still reach its destination and complete mission objectives

if a fault occurs requiring an unexpected cessation of thruster

firing.

Missed-thrust analysis is performed by inserting forced-

coasts into a nominal trajectory, in order to simulate a safe-

mode event. Then, a new trajectory optimization is run follow-

ing the forced-coast to ensure that a new feasible trajectory is

still possible, despite having missed the initially planned thrust-

ing opportunity. PEATSA does this in one of two ways:

1. Using a fixed forced-coast length, constraining delivered

mass and running EMTG by optimizing on flight time.

2. Constraining delivered mass and flight time, and maximiz-

ing the forced-coast length as proposed by Sarli.5)

The options specific to a missed-thrust PEATSA run are

shown in Table 3. PEATSA iterates through the dates of the

nominal tra jectory and creates a new options case file every

x days following the spacecraft’s launch. In each case file, the

options will be modified such that the new initial boundary con-

dition is a free point in space, corresponding to the spacecraft

state along its planned optimal flight path. Then, PEATSA will

either set the options up so that EMTG forces a fixed coast, or

attempts to optimize how long the spacecraft coasts before re-

suming thrusting.

3.3. Task 2. Run All Cases

In each iteration, PEATSA will grab all cases that have been

generated, and run them through the trajectory optimization

solver. As shown in Table 1, one of the parameters set in the

PEATSA options script is the number of cpu’s available, n. This

allows PEATSA to create a list of all active processes, and only

run n instances of EMTG at once. Then, as each case is finished,

PEATSA can start the next case in the queue.

3.4. Task 3. Post-process Results

After every iteration, PEATSA performs a simple parsing of

all the finished cases that have been run through EMTG for all

iterations. The output is an easy to digest csv file summarizing

all of the cases in the PEATSA run. Each line in the csv file

corresponds to one of the cases, and the data that populates the

fields on that line is pulled from the most successful trajectory

solution found for that case thus far. For all PEATSA run types,

the csv file will have fixed entries: location of the trajectory file,

the optimization objective used to generate that trajectory, the

launch date, the final mass of the spacecraft, and the total flight

time.

Beyond the default parameters, the user can spec-

ify additional data to populate the csv file using the

PEATSA option, analysis f ormulas. This list contains

strings which are evaluated in Python using the “eval”

function. For example, if analysis f ormulas = [“Mis-

sion.launch C3”,“MissionOptions.launch vehicle”], then the

csv file will also grab the launch energy and launch vehicle

Pd 3



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

type used for each trajectory. Note that these formulas must

use EMTG’s Python interface classes, explained in Section 2..

For every operation of the post-processing code, except for

iteration 0, there will be multiple versions of each case that

have been run through EMTG. Therefore, part of the respon-

sibility of Task 3 is to compare the iteration 0 version of case

xyz with the iteration i version of case xyz. The user must spec-

ify in the PEATSA options a criteria with which to compare,

comparison criteria. By performing the comparison, only one

version of each case will end up in the csv file, hence one line

per case.

Because PEATSA re-parses every file in its results folder be-

tween iterations, it is possible to manually insert cases into the

cue as well. For example, assume that two identical PEATSA

runs are taking place on servers A and B. If server B finds a par-

ticularly good version of case xyz that server A has not found

yet, it is possible to manually insert it into the results folder on

server A. Then, at the next iteration, server A’s PEATSA run

will find the improved result and include it in its own results

and will use it as an initial guess for its other cases.

The final operation of Task 3 is to make any user requested

plots. For example, if PEATSA is performing a launch window

analysis, and optimizing each launch day’s trajectory on final

mass, then after every iteration, PEATSA can plot the highest

mass trajectory as a function of time. PEATSA saves these plots

as images. Then, after the program is completed, PEATSA gen-

erates a movie of all image files allowing an easy to see iteration

history.

By generating these csv files and plots after every iteration,

it is possible to monitor the progress of PEATSA as it goes. As

each iteration progresses, the user can open the csv files and the

images and ensure that the program is working correctly, or if

modifications are needed.

3.5. Task 4. Re-create Cases with Improved Initial

Guesses

The final operation is also the most novel and what makes

PEATSA so remarkably powerful. EMTG can converge to a

globally optimal solution without any initial guess whatsoever.

However, as trajectory problems become more and more com-

plicated with constraints, and the number of NLP decision vari-

ables increases dramatically, the likelihood of finding a globally

optimal solution without an initial guess decreases greatly.

When performing sensitivity analysis, a natural method is to

use the nominal trajectory as an initial guess for the modified

cases. In many instances this is perfectly suitable, and an ef-

fective method. However, in many situations the nominal tra-

jectory is not particularly useful. For example, if performing a

missed-thrust analysis, the nominal trajectory often looks very

different than the recovery trajectory after an unintended two

week coast during a critical thrusting period. Or, if performing

a launch window analysis over an entire year, the January 1st

case is not a particularly useful initial guess for the December

1st case. However, the January 1st case is likely a good initial

guess for the February 1st case which is a good initial guess for

the March 1st case, and so on.

As will be shown later, for particularly difficult problems that

require a good initial guess, PEATSA is capable of propagating

initial guesses from one side of the sensitivity analysis cases to

the other, where there initially were none. Again, using the ex-

ample of the launch window analysis, the usable initial guesses

propagated from the nominal launch of January 1st to Febru-

ary 1st to March 1st all the way through the calendar until the

December 1st case had an effective initial guess.

This propagation of initial guesses even occurs when the

nominal trajectory is not a useful initial guess, as in the case

of missed-thrust. However, if 100 missed-thrust recovery cases

are run each iteration, that increases the likelihood that a good

trajectory is found by 100, as compared to a single case using

the stochastic MBH. As soon as one case finds a good solution,

the very next iteration, that trajectory can begin propagating out

to all other cases.

Further, because of how MBH works, there is no difference

in running an EMTG case once for 1 hour, or twice for thirty

minutes or six times for ten minutes, as long as the best result

from the previous execution is supplied as an initial guess for

the next execution. However, because PEATSA can grab initial

guesses from other “neighboring” cases, it is quite effective to

decrease each EMTG run’s execution time. The net computa-

tion time is therefore always decreased using PEATSA.

4. Case Studies

To demonstrate how PEATSA works, the design and sensitiv-

ity analysis of two sample missions is presented in this section.

4.1. Uranus

The first case study is a search for launch opportunities to

Uranus. The constraints and mission parameters are summa-

rized in Table 4. This study was not meant to be exhaustive

and the best possible means of reaching Uranus were likely

not found. Rather, this is meant to demonstrate the capabil-

ity of PEATSA and how little hands-on engineering labor is

required to complete tasks that were once very hands-on. It

required roughly twenty minutes of set-up and then the entire

run required roughly 36 hours of computation time on a 64 core

server.

Reaching Uranus directly without any gravity assists en route

is almost certainly infeasible. However, a mission designer

likely would not know a priori what a usable set of flyby bodies

is. PEATSA is able to solve this problem by randomly attempt-

ing different flyby combinations. In this case, PEATSA was

not supplied with any specific flyby combinations, except that

it was allowed up to 5 flybys of Venus, Earth, Mars, Jupiter,

and Saturn in any combination. Then, during each iteration

PEATSA would randomly insert additional cases with a differ-

ent potential flyby sequence. Likely, in most situations, these

cases fail to find an acceptable or improved result. However,

as soon as one good combination is found, it percolates out to

nearby cases. This ends up resulting in different families of so-

lutions throughout the launch window.

The initial set of results without any gravity assists are pre-

sented in Fig. 1. It is already clear that there are families of so-

lutions found, despite EMTG not having any initial guesses yet.

In the second iteration results, shown in Fig. 2, two new flyby

combinations were found to be better than the nominal case of a

direct transfer to Uranus, as shown on the figure. Again, many

Pd 4



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

Table 4. Specifications for Uranus mission

Mission Parameters

Propulsion model impulsive

Maximum flight time 12 years

Maximum numbers of DSMs 1 per flyby

Launch Vehicle Atlas V 551

Spacecraft Isp 220 seconds

Intercept velocity < 7 km/s

EMTG objective maximum mass

EMTG run-time per iteration 60 seconds

PEATSA Options

run type launch window

sorting criteria launch date

comparison criteria maximum final mass

wait f or guess yes

modi f y f lybys yes

maximum f lybys 5

f lyby bodies Venus, Earth, Mars, Jupiter,

Saturn

options to vary launch date

option ranges July 2024 through June

2025

different randomly varied flyby sequences were attempted by

EMTG, but only these two represented improvements. Now

part of the solution set, these improved gravity assist trajecto-

ries can improve the solution of “nearby” cases. For example,

the Venus-Earth flyby trajectory shown in Fig. 2 has a launch

date of 3/29/2025. Using that as an initial guess, a very sim-

ilar solution was found for a launch date of 3/30/2025 in the

following iteration. By iteration 10, these solutions were able

to propagate quite far over the design space as shown in Fig.

3. Because of the stochastic nature of both EMTG’s solution

algorithm and PEATSA’s flyby randomizations, there is not a

deterministic way to determine when the study is complete and

globally optimal solutions have been found everywhere. Alter-

natively, at the cost of additional run-time per iteration, more

than 1 new flyby combination could have been attempted per

iteration. However, in this simple example, that was not done,

and because no improvement was found from iteration 70 to 80,

the run was terminated. The final results are shown in Fig. 4. In

the final data set, there were 3 different gravity assist combina-

tions present: Earth only, Venus-Earth, and Venus-Earth-Earth.

4.2. Low-Thrust Asteroid Sample Return

The second case study is similar to a low-thrust version of the

Osiris REx mission which launched in 2016. Rather than re-

design the mission to Bennu, a simple search of the JPL small

body database6) was done, in order to select an interesting target

with eccentricity greater than .2 and inclination greater than 10

degrees. This was meant to create a challenging scenario that

would require low-thrust in order to be feasible. 1949 TG, also

known as Daphne, was chosen as the target.

Two PEATSA runs were performed in order to design this

mission. First, a trade study was conducted in order to select

mission parameters. This could have been done on any spacraft

or mission system, but for this study, we selected launch vehicle

selection, solar array sizing and propellant tank sizing. The full

details of the first PEATSA run are presented in table 5.

PEATSA was an extremely efficient means of conducting this

Fig. 1. First iteration of results for the Uranus launch window

Fig. 2. Iteration 2 results for the Uranus launch window

Fig. 3. Iteration 10 results for the Uranus launch window

Pd 5



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

Fig. 4. Iteration 80 results for the Uranus launch window

Table 5. Specifications of system study for mission to Daphne

Mission Parameters

Propulsion model polynomial thrust, mass

flow rate vs. power

available

Propulsion system 2 NEXT engines7)

Maximum flight time 10 years

Earth return velocity < 10 km/s

Duty cycle 90%

Propellant margin 10%

Power margin 15%

Bus power 1 kW

Stay time > 500 days

EMTG run-time per iteration 20 seconds

Low-thrust transcription Finite Burn8)

PEATSA Options

run type trade study

comparison criteria maximum final mass

wait f or guess yes

f lyby bodies none

options to vary launch vehicle; solar ar-

ray size; electric propellant

load

option ranges Atlas V - 401 (0), 411 (1),

421 (2), 431 (3), 541 (9) or

551(10); 20 to 40 kW; 900

to 1500 kg

trade study type vary each option separately

study. Only 19 total iterations were required before all cases

had converged to a trendline that seemed likely to be globally

optimal. Given the short run time in EMTG that was used, the

full trade study was complete in roughly thirty minutes. Sim-

ilar iteration histories could be shown as those in the previous

section, however in the interest of space, they will not be repro-

duced and only the final results will be shown. The final trade

study results are presented in Figs. 5 - 7.

A trajectory was arbitarily picked from the initial trade study

to act as a baseline mission design. This trajectory is shown

in Fig. 8. Then, PEATSA was used to perform missed-thrust

Fig. 5. Final trade study results for the Daphne mission.

Fig. 6. Final trade study results for the Daphne mission. See table 5 for

launch vehicle codes

Fig. 7. Final trade study results for the Daphne mission.

Pd 6



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

Fig. 8. Nominal Trajectory for the Daphne mission.

Fig. 9. missed-thrust results for the Daphne mission.

analysis on the baseline design. Recall that EP missions re-

quire higher margins in order recover from a safe-mode event

preventing thrusting. As yet, there is no means of optimizing

a trajectory for missed-thrust robustness, so designers must run

cases to ensure that mission objectives and constraints can still

be met despite faults. The specifications for the missed-thrust

study are shown in Table 6. Requiring a boundary condition to

be along a fixed nominal trajectory is a mathematically more

difficult problem, so the run-time in EMTG was increased con-

siderably for this study. The net effect is that the final results

required almost a week to fully generate and over 60 iterations.

The final output of a missed-thrust study is typically the fault

length sustainable vs. the fault date. This is presented for the

Daphne mission in Fig. 9. Note there are critical periods where

safe modes are more impactful than other periods of the trajec-

tory. If a missed-thrust event occurs during one of these times,

then the spacecraft cannot coast as long and still complete mis-

sion objectives. These critical events tend to correspond to im-

portant orbital extremes, such as aphelion, perihelion, and node

crossings.

Table 6. Specifications of missed-thrust study for mission to Daphne

Mission Parameters

Propulsion model polynomial thrust, mass

flow rate vs. power

available

Propulsion system 2 NEXT engines7)

Maximum flight time 10 years

Launch vehicle Atlas V 551

Propellant load 1350 kg

Solar array size 30 kW (@ 1AU)

Earth return velocity < 10 km/s

Duty cycle 90%

Propellant margin 10%

Power margin 15%

Bus power 1 kW

Stay time > 500 days

EMTG run-time per iteration 1800 seconds

EMTG objective maximum coast

Low-thrust transcription Finite Burn8)

PEATSA Options

run type missed-thrust

comparison criteria maximum length initial

coast

wait f or guess yes

f lyby bodies none

options to vary none

x 7 days

goal 60 day coast

ob jective type maximum coast

5. Conclusion

Performing sensitivity analysis for interplanetary missions is

significantly easier to setup when using PEATSA because the

cases can be auto-generated using only a simple Python options

script and PEATSA’s Task 1. They require literally zero human-

effort to run through a trajectory optimization routine because

of Task 2. They are easier to analyze because of the plots and

data summary files made in Task 3. The wait time to the final

results is less because Task 4 reduces total required computation

time, typically by a very large margin. The ability to introduce

random perturbations such as changing the flyby sequence can

introduce trajectory modifications that often require a genetic

algorithm to consider. And finally, the ability for cases to com-

municate with each other through initial guesses increases the

computation efficiency of every optimization run.

References

1) J.A Englander and B. A. Conway : An Automated Solution of the

Low-Thrust Interplanetary Trajectory Problem Journal of Guidance,

Control, and Dynamics, Vol. 40, No. 1 (2017), pp. 15-27.

2) J. A. Sims and S. N. Flanagan : Preliminary Design of Low-Thrust

Interplanetary Missions AAS/AIAA Astrodynamics Specialist Con-

ference, Girdwood, Alaska, Paper AAS 99-338, August 1999.

3) M. Vavrina, J. Englander and D. Ellison : Global Optimization of N-

Maneuver, High-Thrust Trajectories Using Direct Multiple Shooting

26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, Febru-

ary 2016.

4) D. Oh, J.S. Snyder, R. Hofer, D. Laundau, and T. Randolph : Solar

Electric Propulsion for Discovery Class Missions International Elec-

Pd 7



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

tric Propulsion Conference, Washington, DC, 2013.

5) B. Sarli, M. Ozimek, J. Atchison, J. Englander, and B. Barbee : NASA

Double Asteroid Redirection Test (DART) Trajectory Validation And

Robustness 27th AAS/AIAA Space Flight Mechanics Meeting, San

Antonio, TX, 2017.

6) JPL Small-Body Database Search Engine

https://ssd.jpl.nasa.gov/sbdb_query.cgi, Accessed

March 2017.

7) NASAs Evolutionary Xenon Thruster (NEXT): Ion Propulsion GFE

Component Information Summary for Discovery Missions, July

2014, https://go.usa.gov/xXGwf, July 2014, Accessed March

2017.

8) Englander, Jacob A., Jeremy M. Knittel, Ken Williams, Dale Stan-

bridge, and Donald H. Ellison. : Validation of a Low-Thrust Mission

Design Tool Using Operational Navigation Software 27th AAS/AIAA

Space Flight Mechanics Meeting, San Antonio, TX, 2017.

9) Vavrina, M.A. and Englander, J.A. and Ghosh, A.M. : Coupled Low-

Thrust Trajectory and Systems Optimization Via Multi-objective Hy-

brid Optimal Control 25th AAS/AIAA Space Flight Mechanics Meet-

ing, Williamsburg, VA, 2015.

Pd 8

https://ssd.jpl.nasa.gov/sbdb_query.cgi
https://go.usa.gov/xXGwf

	Introduction
	Trajectory Solver
	Methodology
	PEATSA Options
	Task 1. Case Creation
	Task 2. Run All Cases
	Task 3. Post-process Results
	Task 4. Re-create Cases with Improved Initial Guesses

	Case Studies
	Uranus
	Low-Thrust Asteroid Sample Return

	Conclusion

