THE LYNX MISSION

REVEALING THE INVISIBLE UNIVERSE
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« 8 Science Working Groups

* Optics Working Group

* Instrument Working Group

« 7 ex-officio International members

About 300 total members!
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The historic Accademia dei Lincei (Academy
A symbol of great insight of the Lynx) based their name on this ability to
perform incisive and penetrating

Ability to see through rocks and investigations of the natural world.

trees to reveal the true nature of : _
things. Galileo himself was a proud member, and the

Academy of the Lynx coined the term
telescope for his marvelous device for
peering into the cosmos.

Much of the baryonic matter and the settings of the most active energy release
in the Universe are visible primarily or exclusively in the X-rays, so...
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Scientifically Compelling

THE BIG QUESTIONS:

How does the Universe work?
and

How did we get here?

Science goals mapped into the structure of the Science Working Groups:
» First Accretion Light in the Universe

» Cycles of Baryons in and out of Galaxies

» Physics of Energy Feedback

» Physics of Cosmic Plasmas

» Stellar Lifecycles

» Evolution of Structure and AGN populations

* Physics of High Density Matter, Compact Objects, and Accretion



Lynx Science Requirements

LEAPS IN CAPABILITY

* High sensitivity in the soft X-ray band. First Accretion Light science
requires mirror effective area >~ 2 square meters at E < 2 keV.

* High angular resolution (sub-arcsec) is key for nearly all Lynx
science. Desire 0.5 arcsec or better resolution.

* Detectors should provide fine imaging, low internal background, and
high resolution, spatially resolved spectroscopy.

* Very high spectral resolution (R >~ 5000) in the soft band.




Lynx Optics & Science Instruments

« Large-Area High-Angular-Resolution Optical Assembly
* High Definition X-Ray Imager

« X-Ray Microcalorimeter Imaging Specirometer

« X-Ray Grating Specirometer




Lynx X-Ray Optics and Concept

@3m, f=10m mirror system,
with Chandra-like total mass




Taxonomy of X-ray Telescope Fabrication
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Mirror Fabrication

Full Shell
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Mirror Correction
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Next-Generation X-ray Mirror

New mirror is built from densely packed thin
mirror elements. 3.0m outer diameter. ~1200 kg

for 2.3m? of collecting area

Chandra mirror shells are 2.5cm thick.
1,500 kg for 0.08m? of collecting area

Innovative technologies for mirror elements are pursued
at MSFC, SAO, GSFC, MIT, etc. Optics Working Group
IS in place, with a charge to facilitate technology
development, industry participation, and assist the
STDT with the trades and development of the
technology development roadmap.




High throughput with sub-arcsec resolution

* X 50 more effective area than Chandra.
* X 16 larger solid angle for sub-arcsec imaging — out to 10 arcmin radius
* X800 higher survey speed at the Chandra Deep Field limit




X-ray Microcalorimeter Imaging Spectrometer (“Whiskers™)

Parameter Goal
Energy Range 0.2-10 keV
Spatial Resolution 1 arcsec
Field-of-View 5 arcmin x 5 arcmin (min)
Energy Resolution <5eV
Count Rate Capability <1 c/s per pixel
Pixel Size / array size (10-m focal length) | 50 um pixels / 300 x 300 pixel array
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Challenge: Develop multiplexing approaches for achieving ~10° pixel arrays

Bandler —Lynx F2F 04/2017



X-ray Microcalorimeter Imaging Spectrometer (“Whiskers”)

Progress with respect to multiplexing:
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High Definition X-ray Imager (“Spots”)

Parameter Goal
Energy Range 0.2 -10 keV
Field of View 22 arcmin x 22 arcmin
Energy Resolution 37 eV @ 0.3 keV, 120 eV @ 6 keV (FWHM)
Quantum Efficiency >90% (0.3-6 keV), > 10% (0.2-9 keV)
Pixel Size / Array Size <16 um (< 0.33 arcsec/pixel) / 4096 x 4096 (or equivalent)
Frame Rate > 100 frames/s (full frame)
> 10000 frames/s (windowed region)
Read Noise <4e rms

All have been demonstrated individually

Monolithic CMOS - Digital CCDs w/
Hybrid CMOS (TBE/PSU
(Sarnoff/SAO, and MPE) 4 ( ) CMOS readout (LL/MIT)

Challenges: Develop sensor package that meets all requirements, and approximates the
optimal focal surface

Falcone —Lynx F2F 04/2017



Advantages of Active Pixel Sensors

Sarnoff

Teledyne

Current State of the Art

e All of the key requirements are met by
one or more of the sensor technologies

* Nosingle sensor meets them all — lots

of work to do!

Hybrid Monolithic

Key Advantages:

— Multiple bonded layers,
with layers for photon
detection and readout
circuitry optimized

— Single Si wafer used
for both photon detection
and read out electronics
— Need improved QE

independently

-Need lower read noise <4e-

 Orders of magnitude higher frame rates:
(>100 full-frame/sec, >10000 subframe/sec)

S55Fe x-ray spectrum. T=300K

- Significantly improved radiation hardness: " spectrum with simpl
* Fully addressable (i.e. high speed windowing) evegt Pr?cessing-

.. . . grade|selection.
* Near Fano-limited resolution over entire O E~160eV |
bandpass |
* Lower power 50| i
» Near room temperature operation b ll |
* Large format (up to 4Kx4K abuttable devices) oL il

0 2000 4000 6000 8000 10000

Energy eV

Kenter, A., et al., Proc. SPIE 9154, 2014



X-Ray Grating Spectrometer (“Claws”)

Resolving power = 5000 & effective area = 4000 cm?

* Energy range 0.2 — 2.0 keV

Blazed Off-Plane Critical Angle Transmission (CAT) gratings
Reflection gratings (MIT)

(Univ. of lowa)

Level 1 support

Level 2 support

Challenges: improving yield, developing efficient assembly processes, and
improving efficiency

McEntaffer, Heilmann —Lynx F2F 04/2017



Critical Angle Transmission Gratings (MIT)

CAT grating combines
advantages of
transmission gratings
(relaxed alignment, low
weight) with high
efficiency of blazed
reflection gratings.

Blazing achieved via

Grating equation:

m = p (sin(®) + sin(pm)),
m = diffraction order

Blazing: p,~ 0

High reflectivity:
0 < B¢ = critical angle of
total external reflection

Strawman:

Silicon grating, 6 = 1.5°
p =200 nm

b=40nm

d=6um

reflection from grating bar aspect ratio d/b = 150

sidewalls at graze angles
below the critical angle for
total external reflection.

\\\\\\\\\\\\\\

High energy x rays

undergo minimal \‘{m
absorption and contribute 200 nm pitch ALl
to effective area at focus. CAT grating bars

ch.8 kY

Schattenburg —XR-SIG meeting, Jan. 5, 2014



Critical Angle Transmission Gratings (MIT)
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LYNX

X-ray vision into the “Invisible Universe”

for true understanding of the origins and underlying physics of the
COSMOS

Leaps in Capability: large area with high angular resolution for 2—3 orders of magnitude gains in
sensitivity, field of view with subarcsec imaging, high resolution spectroscopy for point-like and
extended sources. May be possible with a Chandra-like overall mission envelope.

Scientifically compelling: frontier science from Solar system to first accretion light in Universe;
revolution in understanding physics of astronomical systems.

Synergy: Great synergy and complementarity with the next-generation facilities —JWST,
WFIRST, GSMT, LISA, ALMA, SKA

wwwastro.msfc.nasa.gov/lynx



http://wwwastro.msfc.nasa.gov/lynx

BACKUP SLIDES



Athena X-ray Surveyor

Key Goals:
K ls: e
: .ey Godals ® Sensitivity (50 X better
®* Microcalorimeter spectroscopy than Chandral)

(R=1000)

4 ® R=1000 spectroscopy on
* Wide, medium-sensitivity surveys P oY

1" scales, adding 3rd
dimension to data

2 ® R=5000 spectroscopy for
point sources

Area is built up at the expense of
angular resolution (10 X worse) &
sensitivity (5 X worse than

Chandra)

\ v Areqa is built up while
preserving Chandra

angular resolution (0.5")

v 16 X field of view with
sub-arcsec imaging




A Successor to Chandra

« Angular resolution at least as good as Chandra

* Much higher photon throughput than Chandra (observations are photon-

limited)
vIncorporated relevant prior v Limits most spacecraft | v' Achieves Chandra-
(Con-X, IXO, AXSIO) . requirements to like cost ($2.95B for
development and Chandra Chandra-like Phase B through
heritage launch)
< 12m >

ﬁ :

) )
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The Lynx Science Case

Doug Swartz
Universities Space Research Association



Discovery Space Science vs Targeted Questions

Great Observatories of the 1980’s and 1990’s:
® Hubble, Compton, Chandra, Spitzer
® Open Discovery Space

Targeted Missions addressing Specific Questions:
® Planck, Kepler
® Meeting Gov't-funded “Metrics™

What will be the mission for the 2030’s ?

- Steve Kahn @ Lynx Synergy Workshop



Key Theme: How Did We Get Here?

- NASA Science Mission Directorate - PCOS Program

Though astronomers have been studying stars for thousands of years,
it is only in the past 35 or so years that they have been able to employ
iInstruments that detect light across the entire electromagnetic
spectrum—from radio waves to gamma rays—to peer into the dusty
clouds where stars are born in our own Galaxy. If we are to
comprehend how the universe makes stars—and planets that
orbit them today—we must continue to study stars and galaxies
with ever more powerful telescopes.

It is still unknown whether the universe created black holes with the
first generation of stars or whether these exotic objects were created
by the first generation of stars. Because black holes represent the
most extreme physical conditions of spacetime and generate
some of the most energetic phenomena following the Big Bang,
black holes are the ultimate physical laboratories for testing
theories of the universe.
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Cassiopeia A SNR

Imagine what can be done with a micro-calorimeter !



NGC 6357 S’rar-Formmg Reglon
Supernova-blown Cavities T : i :

* Giant HIl region w/ 3 MYSCs
* |.7 kpc distant; ~30’ diameter
* 3100 X-ray sources
* magnetic reconnection
flares, protostars, massive
star wind shocks
* add IR: best stellar census
* unresolved emission is hot
plasma due to massive star
wind shocks
* transport of metals
* ISM heating = star

formation quenching, gas IR (cold gas+dust) blue Optical (HII)

dispersion, turbulence purple X-ray (stars+hot gas)
=>stellar feedback

- Leisa Townsley et al.
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NGC 6357 Star-Forming Region

* Giant HIl region w/ 3 MYSCs
* |.7 kpc distant; ~30’ diameter
* 3100 X-ray sources
* magnetic reconnection
flares, protostars, massive
star wind shocks
* add IR: best stellar census
* unresolved emission is hot
plasma due to massive star
wind shocks
* transport of metals
* ISM heating = star

formation quenching, gas IR (cold gas+dust) blue Optical (HII)

dispersion, turbulence purple X-ray (stars+hot gas)
=>stellar feedback

- Leisa Townsley et al.
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(a) NGC 6357 G353.08+1.24
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Imagine Chandra resolution with 30x throughput !



M82 Starburst Galaxy

e stellar feedback extends to

galactic scales

* drives baryons into the CGM and
regulates galaxy growth

* SNe in dwarf galaxies

* AGN feedback in massive galaxies

Galaxy Stellar Mass

—
—_
~

-

cool warm and X-ray-emitting
galactic super wind in M82

- roolloexx
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Optical light sees ‘only’ the stars

* actual distribution of galaxies in the nearby Universe to z~O0. |
* traces the Cosmic Web filaments, galaxy groups, and clusters of galaxies




Optical light sees ‘only’ the stars

* AGN feedback regulates growth
of LSS (groups/clusters) at cosmic
web ‘nodes’

* Hot, diffuse IGM contains most of
the baryons (UV absorption spectra

sample only a small fraction)

* Color denotes gas Temperature

* Same simulations but different
feedback treatments give very
different observational results

- Agertz & Kravtsov ApJ (2015)

Imagine tracing the Cosmic Web with X-ray spectroscopy !



First accretion light in the Universe

OPEN QUESTIONS

Masses of initial BH seeds
Early accretion history of seed BHSs

Contribution to Re-ionization
Observational signatures of Super-Eddington flows
Importance of mergers
When do the correlations between BHs and their hosts
get set-up

- Priya Natarajan @ X-ray Vision Workshop



First accretion light in the Universe

Low-mass Seeds from Pop Ill stars at z~20
e |0-100 M/M@ but mass and number of first stars uncertain

® A challenge to grow to 10° M/Mo by z~3; requires super-Eddington
growth

Massive Seeds by Direct Collapse
e |000 M/Mo collapse of a nuclear star cluster

Higher mass seeds only postulated

®
® Must mitigate H2 cooling
® Must avoid fragmentation of porto-galaxy & centrally concentrate mass

Masses of Initial Black Hole Seeds



Black Hole Mass, M

First accretion light in
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0.5-2 keV flux limit (erg cm™2 s7')

First accretion light in the Universe
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Only Lynx has the sensitivity and angular resolution needed:

® Can detect 5x10% Mg seeds at z~10
® Confusion limit: expect only 0.03 galaxies per 0.5 Lynx beam

Observational Signatures of First-Light Accretion Flows



First accretion light in the Universe
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It is still unknown whether the universe created black holes with the first
generation of stars or whether these exotic objects were created by the first
generation of stars.

When do the correlations between BHs and their hosts get set up



It's tough to make predictions, especially about the future

- Yogi Berra



